• Title/Summary/Keyword: Nano-level

Search Result 492, Processing Time 0.027 seconds

PD Signal Time-Frequency Map and PRPD Pattern Analysis of Nano SiO2 Modified Palm Oil for Transformer Insulation Applications

  • Arvind Shriram, R.K.;Chandrasekar, S.;Karthik, B.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.902-910
    • /
    • 2018
  • In recent times, development of nanofluid insulation for power transformers is a hot research topic. Many researchers reported the enhancement in dielectric characteristics of nano modified mineral oils. Considering the drawbacks of petroleum based mineral oil, it is necessary to understand the dielectric characteristics of nanofluids developed with natural ester based oils. Palm oil has better insulation characteristics comparable to mineral oil. However very few research reports is available in the area of nanofluids based on palm oil. Partial discharge (PD) is one of the major sources of insulation performance degradation of transformer oil. It is essential to understand the partial discharge(PD) characteristics by collecting huge data base of PD performance of nano modified palm oil which will increase its confidence level for power transformer application. Knowing these facts, in the present work, certain laboratory experiments have been performed on PD characteristics of nano $SiO_2$ modified palm oil at different electrode configurations. Influence of concentration of nano filler material on the PD characteristics is also studied. Partial discharge inception voltage, Phase resolved partial discharge (PRPD) pattern, PD signal time-frequency domain characteristics, PD signal equivalent timelength-bandwidth mapping, Weibull distribution statistical parameters of PRPD pattern, skewness, repetition rate and phase angle variations are evaluated at different test conditions. From the results of the experiments conducted, we came to understand that PD performance of palm oil is considerably enhanced with the addition of $nano-SiO_2$ filler at 0.01%wt and 0.05%wt concentration. Significant reduction in PD inception voltage, repetition rate, Weibull shape parameter and PD magnitude are noticed with addition of $SiO_2$ nanofillers in palm oil. These results will be useful for recommending nano modified palm oil for power transformer applications.

Design of VCM(Voice Coil Motor) for improvement in resolution and driving in a large displacement (분해능 향상 및 대구동 변위를 위한 보이스코일 모터의 설계)

  • You, Y.M.;Cho, J.H.;Kwon, B.I.
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.137-139
    • /
    • 2003
  • In this paper, a design of VCM(Voice Coil Motor) for the measurement system of nano-level force and displacement was proposed and developed. This paper present the VCM shape for improvement of position resolution and guarantee of a large displacement. And then the finite element analysis method(FEM) utilized to produce linear driving thrust and satisfy required thrust of the system. The result shows the applicable possibility of the proposed VCM as a study for nano-level measurement system.

  • PDF

Nano-level Device 제조를 위한 신 메탈 전극 세정에 관한 연구

  • 변재호;송용화;천희곤
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2003.12a
    • /
    • pp.64-67
    • /
    • 2003
  • 본 연구는 nano-level 디바이스 제조를 위한 새로운 금속 전극인 W 과 Ti metal 표면 세정에 관한 연구이다. 기존 $SC-1(NH_4OH/H_2O_2/H_2O)$ 세정 용액에서 산화제 ($H_2O_2$)를 사용하지 않는 dilute $NH_4$OH 세정은 전극 사이 절연막 표면의 particle 제거가 가능하면서 노출된 metal 막의 세정 damage를 최소화 시키는 것을 확인했다. SC-1 용액 내에 산화제 미 첨가 효과는, metal 막의 식각 현상을 억제시키고, 절연막 표면의 particle 제거 효과에 영향을 미치지 않는 것으로 판단된다. 이러한 방법은 short time 공정이 필요한 관계로, spin type wet 장비 채택으로 세정 효과의 극대화를 얻을 수 있을 것으로 판단된다.

  • PDF

The Effect on the Marine Water and Sediment Quality by the Use of Nano-S 1. Result of Water Tank Experiment (Nano-S가 해양수질 및 저질에 미치는 영향에 관한 연구 1. 실내수조실험 결과)

  • Cho, Hyeon-Seo;Cho, Chon-Rae;Jang, Young-Nam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.3
    • /
    • pp.158-163
    • /
    • 2005
  • The purpose of this study was to observe the effect on the marine environment by the use of Nano-S. Nano-S was made to apply to improve the red tide bloom. The experiment was performed at round tank with volume of 180 L. Each tank was filled with an aggravated sediment about $14{\pm}1cm$ hight and sea water. The water flow-rate of tank was established on the rate of 6.25 L/hr. Sea water level was fitted to 40 cm, therefore the filled water was about 150 L. The sediment was stabilized during one week. Then the Nano-S and the red mud were added into each tank 0 kg(control), 1 kg(tank A), 2 kg(tank B), 5 kg(tank C) and 10 kg(tank D) each other. The quantity was fulfilled with 0 kg(control), 2.75 kg(tank A), 5.51 kg(tank B), 13.77 kg(tank C) and 27.55 kg(tank D) per square meter of sediment. The experiment was performed during 30 days. Water and sediment samples were collected from each tanks on the before 1hour and after 1, 3, 6, 12 hour and 1st, 3th, 5th, 7th, 10th, 15th, 30th day of the experiment period. The change of water and sediment quality was analyzed before and after applying the Nano-S and the red mud.

  • PDF

Errors of Surface Image Due to the Different Tip of Nano-Indenter (나노인덴터 압입팁의 특성에 따른 표면 이미지 오차 연구)

  • Kim, Soo-In;Lee, Chan-Mi;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.5
    • /
    • pp.346-351
    • /
    • 2009
  • Due to the decrease of line width and increase of the integration level of the device, it is expected that 'Bottom-up' method will replace currently used 'Top-down' method. Researches about 'Bottom-up' device production such as Nanowires and Nanobelts are widely held on. To utilize these technologies in devices, properties of matter should be exactly measured. Nano-indenters are used to measure the properties of nano-scale structures. Additionally, Nano-indenters provide AFM(Atomic Force Microscopy) function to get the image of the surface and get physical properties for exact position of nano-structure using this image. However, nano-indenter tips have relatively much bigger size than ordinary AFM probes, there occurs considerable error in surface image by Nano-Indenter. Accordingly, this research used 50nm Berkovich tip and 1um $90^{\circ}$ Conical tip, which are commonly used in Nano-Indenter. To find out the surface characteristics for each kind of tip, we indented the surface of thin layer by each tip and compared surface image and indentation depth. Then, we got image of 100nm-size structure by surface scanning using Nano-Indenter and compared it with surface image gained by current AFM technology. We calculated the errors between two images and compared it with theoretical error.

Basic Study of the Hysteresis of a Nano Shock Absorbing Damper by Employing Mixed Lyophobic Coating Silica Gel (실리카 겔의 소수화 코팅 혼합 정도에 따른 나노 충격 흡수 장치의 이력 현상에 대한 기초적 연구)

  • 문병영;김흥섭
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.59-66
    • /
    • 2003
  • A novel application of nano-technology in the field of engineering, called colloidal damper, is investigated. This device is complementary to the hydraulic damper, having a cylinder-piston construction. Particularly for colloidal damper, the hydraulic oil is replacedby a colloidal suspension, which is consisted from a nano-porous matrix with controlled architecture and a lyophobic fluid. In this experimental work, the porous matrix is composed from silica gel, with labyrinth architecture, coated by organo-silicones substances in order to achieve a hydrophobic surface. Water is considered as associated lyophobic fluid. The colloidal damper test rig and the measuring technique of the hysteresis are described. the influence of the hydrophobicity level upon the colloidal damper hysteresis is investigated, for silica gels with similar pores distribution. A certain desired shape of the hysteresis can be achieved by employing mixture of silica gels with different level of hydrophobicity and/or architecture. With these results, it is believed that the proposed damper can be designed and be applied to the desired structure.

Electrical Properties of MIM and MIS Structure using Carbon Nitride Films

  • Lee, Hyo-Ung;Lee, Sung-Pil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.5
    • /
    • pp.257-261
    • /
    • 2006
  • Nano-structured carbon nitride $(CN_x)$ films were prepared by reactive RF magnetron sputtering with a DC bias at various deposition conditions, and the physical and electrical properties were investigated. FTIR spectrum indicated an ${alpha}C_3N_4$ peak in the films. The carbon nitride film deposited on Si substrate had a nano-structured surface morphology. The grain size was about 20 nm and the deposition rate was $1.7{\mu}m/hr$. When the $N_2/Ar$ ratio was 3/7, the level of nitrogen incorporation was 34.3 at%. The film had a low dielectric constant. The metal-insulator-semiconductor (MIS) capacitors that the carbon nitride was deposited as insulators, exhibited a typical C-V characteristics.

Machining Properties to Nano-Level Mirror Surface Finishing for Fine Grained WC-Co 18% Alloy using Magnetic Polishing Slurry (자성연마슬러리를 이용한 초미립 초경합금(WC-Co 18%)의 나노급 경면가공 특성)

  • Kwak, Tae-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.102-107
    • /
    • 2009
  • This study has been focused on an effective surface finishing method combining ELID (ELectrolytic In-process Dressing) and MAP (Magnetic Assisted Polishing) for the nano-precision mirror grinding of glass-lens molding mould. ELID grinding is an excellent technique for mirror grinding of various advanced metallic or nonmetallic materials. A polishing process is also required for elimination of scratches present on ELID grinded surfaces. MAP has been used as polishing method due to its high polishing efficiency and superior surface quality. It also presents some techniques for achieving the nanometer roughness of the hard material such as WC-Co, which are extensively used in precision tooling material.

Small Molecular Organic Nonvolatile Memory Cells Fabricated with in Situ O2 Plasma Oxidation

  • Seo, Sung-Ho;Nam, Woo-Sik;Park, Jea-Gun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.1
    • /
    • pp.40-45
    • /
    • 2008
  • We developed small molecular organic nonvolatile $4F^2$ memory cells using metal layer evaporation followed by $O_2$ plasma oxidation. Our memory cells sandwich an upper ${\alpha}$-NPD layer, Al nanocrystals surrounded by $Al_2O_3$, and a bottom ${\alpha}$-NPD layer between top and bottom electrodes. Their nonvolatile memory characteristics are excellent: the $V_{th},\;V_p$ (program), $V_e$ (erase), memory margin ($I_{on}/I_{off}$), data retention time, and erase and program endurance were 2.6 V, 5.3 V, 8.5 V, ${\approx}1.5{\times}10^2,\;1{\times}10^5s$, and $1{\times}10^3$ cycles, respectively. They also demonstrated symmetrical current versus voltage characteristics and a reversible erase and program process, indicating potential for terabit-level nonvolatile memory.

A Study on the Manufacturing Technology Development of High Purity NanoPowder (고순도 나노분말 제조기술 개발에 관한 연구)

  • 박영문;차용훈;성백섭;윤길하
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1178-1181
    • /
    • 2003
  • Nanotechnology is the creation and utilization of materials, devices, and systems through the control of matter on the nanometer-length scale, that is, at the level of atoms, molecules, and supramolecular structures. The essence of nanotechnology is the ability to work at these levels to generate larger structures with fundamentally new molecular organization. These nanostructures, made with building blocks understood from first principles, are the smallest human-made objects, and they exhibit novel physical, chemical, and biological properties and phenomena. The aim of nanotechnology is to learn to exploit these properties and efficiently manufacture and employ the structures. Control of matter on the nanoscale already plays an important role in scientific disciplines as diverse as physics, chemistry, materials science, biology, medicine, engineering, and computer simulation. This paper describes the superprecision nano separator to productive particle size of nano powder. this separator system is very important in the industrial area for other high technology parts.

  • PDF