• Title/Summary/Keyword: N-lR

Search Result 1,987, Processing Time 0.033 seconds

Experimental Proof for Symmetric Ramsey Numbers (대칭 램지 수의 실험적 증명)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.3
    • /
    • pp.69-74
    • /
    • 2015
  • This paper offers solutions to unresolved $43{\leq}R(5,5){\leq}49$ and $102{\leq}R(6,6){\leq}165$ problems of Ramsey's number. The Ramsey's number R(s,t) of a complete graph $k_n$ dictates that n-1 number of incidental edges of a arbitrary vertex ${\upsilon}$ is dichotomized into two colors: (n-1)/2=R and (n-1)/2=B. Therefore, if one introduces the concept of distance to the vertex ${\upsilon}$, one may construct a partite graph $K_n=K_L+{\upsilon}+K_R$, to satisfy (n-1)/2=R of {$K_L,{\upsilon}$} and (n-1)/2=B of {${\upsilon},K_R$}. Subsequently, given that $K_L$ forms the color R of $K_{s-1)$, $K_S$ is attainable. Likewise, given that $K_R$ forms the color B of $K_{t-1}$, $K_t$ is obtained. By following the above-mentioned steps, $R(s,t)=K_n$ was obtained, satisfying necessary and sufficient conditions where, for $K_L$ and $K_R$, the maximum distance should be even and incidental edges of all vertices should be equal are satisfied. This paper accordingly proves R(5,5)=43 and R(6,6)=91.

Totally umbilic lorentzian surfaces embedded in $L^n$

  • Hong, Seong-Kowan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.9-17
    • /
    • 1997
  • Define $\bar{g}{\upsilon, \omega) = -\upsilon_1\omega_1 + \cdots + \upsilon_n\omega_n$ for $\upsilon, \omega in R^n$. $R^n$ together with this metric is called the Lorentzian n-space, denoted by $L^n$, and $R^n$ together with the Euclidean metric is called the Euclidean n-space, denoted by $E^n$. A Lorentzian surface in $L^n$ means an orientable connected 2-dimensional Lorentzian submanifold of $L^n$ equipped with the induced Lorentzian metrix g from $\bar{g}$.

  • PDF

ESTIMATES FOR RIESZ TRANSFORMS ASSOCIATED WITH SCHRÖDINGER TYPE OPERATORS

  • Wang, Yueshan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1117-1127
    • /
    • 2019
  • Let ${\mathcal{L}}_2=(-{\Delta})^2+V^2$ be the $Schr{\ddot{o}}dinger$ type operator, where nonnegative potential V belongs to the reverse $H{\ddot{o}}lder$ class $RH_s$, s > n/2. In this paper, we consider the operator $T_{{\alpha},{\beta}}=V^{2{\alpha}}{\mathcal{L}}^{-{\beta}}_2$ and its conjugate $T^*_{{\alpha},{\beta}}$, where $0<{\alpha}{\leq}{\beta}{\leq}1$. We establish the $(L^p,\;L^q)$-boundedness of operator $T_{{\alpha},{\beta}}$ and $T^*_{{\alpha},{\beta}}$, respectively, we also show that $T_{{\alpha},{\beta}}$ is bounded from Hardy type space $H^1_{L_2}({\mathbb{R}}^n)$ into $L^{p_2}({\mathbb{R}}^n)$ and $T^*_{{\alpha},{\beta}}$ is bounded from $L^{p_1}({\mathbb{R}}^n)$ into BMO type space $BMO_{{\mathcal{L}}1}({\mathbb{R}}^n)$, where $p_1={\frac{n}{4({\beta}-{\alpha})}}$, $p_2={\frac{n}{n-4({\beta}-{\alpha})}}$.

AN INDEPENDENT RESULT FOR ATTACHED PRIMES OF CERTAIN TOR-MODULES

  • Khanh, Pham Huu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.531-540
    • /
    • 2015
  • Let (R, m) be a Noetherian local ring, I an ideal of R, and A an Artinian R-module. Let $k{\geq}0$ be an integer and $r=Width_{&gt;k}(I,A)$ the supremum of length of A-cosequence in dimension > k in I defined by Nhan-Hoang [8]. It is shown that for all $t{\leq}r$ the sets $$(\bigcup_{i=0}^{t}Att_R(Tor_i^R(R/I^n,A)))_{{\geq}k}\;and\\(\bigcup_{i=0}^{t}Att_R(Tor_i^R(R/(a_1^{n_1},{\cdots},a_l^{n_l}),A)))_{{\geq}k}$$ are independent of the choice of $n,n_1,{\cdots},n_l$ for any system of generators ($a_1,{\cdots},a_l$) of I.

Lr INEQUALITIES OF GENERALIZED TURÁN-TYPE INEQUALITIES OF POLYNOMIALS

  • Singh, Thangjam Birkramjit;Krishnadas, Kshetrimayum;Chanam, Barchand
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.4
    • /
    • pp.855-868
    • /
    • 2021
  • If p(z) is a polynomial of degree n having all its zeros in |z| ≤ k, k ≤ 1, then for 𝜌R ≥ k2 and 𝜌 ≤ R, Aziz and Zargar [4] proved that $${\max_{{\mid}z{\mid}=1}}{\mid}p^{\prime}(z){\mid}{\geq}n{\frac{(R+k)^{n-1}}{({\rho}+k)^n}}\{{\max_{{\mid}z{\mid}=1}}{\mid}p(z){\mid}+{\min_{{\mid}z{\mid}=k}}{\mid}p(z){\mid}\}$$. We prove a generalized Lr extension of the above result for a more general class of polynomials $p(z)=a_nz^n+\sum\limits_{{\nu}={\mu}}^{n}a_n-_{\nu}z^{n-\nu}$, $1{\leq}{\mu}{\leq}n$. We also obtain another Lr analogue of a result for the above general class of polynomials proved by Chanam and Dewan [6].

Efficient Architectures for Modular Exponentiation Using Montgomery Multiplier (Montgomery 곱셈기를 이용한 효율적인 모듈라 멱승기 구조)

  • 하재철;문상재
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.5
    • /
    • pp.63-74
    • /
    • 2001
  • Modular exponentiation is an essential operation required for implementations of most public key cryptosystems. This paper presents two architectures for modular exponentiation using the Montgomery modular multiplication algorithm combined with two binary exponentiation methods, L-R(Left to Left) algorithms. The proposed architectures make use of MUXes for efficient pre-computation and post-computation in Montgomery\`s algorithm. For an n-bit modulus, if mulitplication with m carry processing clocks can be done (n+m) clocks, the L-R type design requires (1.5n+5)(n+m) clocks on average for an exponentiation. The R-L type design takes (n+4)(n+m) clocks in the worst case.

GENERATING PAIRS FOR THE SPORADIC GROUP Ru

  • Darafsheh, M.R.;Ashrafi, A.R.
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.143-154
    • /
    • 2003
  • A finite group G is called (l, m, n)-generated, if it is a quotient group of the triangle group T(l, m, n) = 〈$\chi$, y, z│$\chi$$\^$l/ = y$\^$m/ = z$^n$ = $\chi$yz = 1〉. In [19], the question of finding all triples (l, m, n) such that non-abelian finite simple group are (l, m, n)-generated was posed. In this paper we partially answer this question for the sporadic group Ru. In fact, we prove that if p, q and r are prime divisors of │Ru│, where p < q < r and$.$(p, q) $\neq$ (2, 3), then Ru is (p, q, r)-generated.

ON MARCINKIEWICZ'S TYPE LAW FOR FUZZY RANDOM SETS

  • Kwon, Joong-Sung;Shim, Hong-Tae
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.1_2
    • /
    • pp.55-60
    • /
    • 2014
  • In this paper, we will obtain Marcinkiewicz's type limit laws for fuzzy random sets as follows : Let {$X_n{\mid}n{\geq}1$} be a sequence of independent identically distributed fuzzy random sets and $E{\parallel}X_i{\parallel}^r_{{\rho_p}}$ < ${\infty}$ with $1{\leq}r{\leq}2$. Then the following are equivalent: $S_n/n^{\frac{1}{r}}{\rightarrow}{\tilde{0}}$ a.s. in the metric ${\rho}_p$ if and only if $S_n/n^{\frac{1}{r}}{\rightarrow}{\tilde{0}}$ in probability in the metric ${\rho}_p$ if and only if $S_n/n^{\frac{1}{r}}{\rightarrow}{\tilde{0}}$ in $L_1$ if and only if $S_n/n^{\frac{1}{r}}{\rightarrow}{\tilde{0}}$ in $L_r$ where $S_n={\Sigma}^n_{i=1}\;X_i$.

Generalized Divisibility Rule of Natural Number m (자연수 m의 일반화된 배수 판정법)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.87-93
    • /
    • 2014
  • For n/m=qm+r, there is no simple divisibility rule for simple m=7 such that is the n multiply by m? This problem can be more complex for two or more digits of m. The Dunkels method has been known for generalized divisibility test method, but this method can not compute very large digits number that can not processed by computer. This paper suggests simple and exact divisibility method for m completely irrelevant n and m of digits. The proposed method sets $r_1=n_1n_2{\cdots}n_l(mod m)$ for $n=n_1n_2n_3{\cdots}n_k$, $m=m_1m_2{\cdots}m_l$. Then this method computes $r_i=r_{i-1}{\times}10+n_i(mod m)$, $i=2,3,{\cdots}k-l+1$ and reduces the digits of n one-by-one. The proposed method can be get the quotient and remainder with easy, fast and correct for various n,m experimental data.

THE FINITE DIMENSIONAL PRIME RINGS

  • Koh, Kwangil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.45-49
    • /
    • 1983
  • If R is ring and M is a right (or left) R-module, then M is called a faithful R-module if, for some a in R, x.a=0 for all x.mem.M then a=0. In [4], R.E. Johnson defines that M is a prime module if every non-zero submodule of M is faithful. Let us define that M is of prime type provided that M is faithful if and only if every non-zero submodule is faithful. We call a right (left) ideal I of R is of prime type if R/I is of prime type as a R-module. This is equivalent to the condition that if xRy.subeq.I then either x.mem.I ro y.mem.I (see [5:3:1]). It is easy to see that in case R is a commutative ring then a right or left ideal of a prime type is just a prime ideal. We have defined in [5], that a chain of right ideals of prime type in a ring R is a finite strictly increasing sequence I$_{0}$.contnd.I$_{1}$.contnd....contnd.I$_{n}$; the length of the chain is n. By the right dimension of a ring R, which is denoted by dim, R, we mean the supremum of the length of all chains of right ideals of prime type in R. It is an integer .geq.0 or .inf.. The left dimension of R, which is denoted by dim$_{l}$ R is similarly defined. It was shown in [5], that dim$_{r}$R=0 if and only if dim$_{l}$ R=0 if and only if R modulo the prime radical is a strongly regular ring. By "a strongly regular ring", we mean that for every a in R there is x in R such that axa=a=a$^{2}$x. It was also shown that R is a simple ring if and only if every right ideal is of prime type if and only if every left ideal is of prime type. In case, R is a (right or left) primitive ring then dim$_{r}$R=n if and only if dim$_{l}$ R=n if and only if R.iden.D$_{n+1}$ , n+1 by n+1 matrix ring on a division ring D. in this paper, we establish the following results: (1) If R is prime ring and dim$_{r}$R=n then either R is a righe Ore domain such that every non-zero right ideal of a prime type contains a non-zero minimal prime ideal or the classical ring of ritght quotients is isomorphic to m*m matrix ring over a division ring where m.leq.n+1. (b) If R is prime ring and dim$_{r}$R=n then dim$_{l}$ R=n if dim$_{l}$ R=n if dim$_{l}$ R<.inf. (c) Let R be a principal right and left ideal domain. If dim$_{r}$R=1 then R is an unique factorization domain.TEX>R=1 then R is an unique factorization domain.

  • PDF