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TOTALLY UMBILIC LORENTZIAN
SURFACES EMBEDDED IN L

SEONG-KoOwAN HONG

1. Introduction

Define g(v,w) = —viw; + -+ + vwy, for v , w in R®. R™ together
with this metric is called the Lorentzian n-space, denoted by L™, and
R™ together with the Euclidean metric is called the Euclidean n-space,
denoted by E™. A Lorentzian surface in L™ means an orientable con-
nected 2-dimensional Lorentzian submanifold of L™ equipped with the
induced Lorentzian metric g from g.

Let M be a Lorentzian surface in L™, D the flat Levi-Civita connec-
tion on L™, V the induced connection on M, and h the second funda-
mental form on M. A point p of M is umbilic if there is a normal vector
z such that h(v,w) = g(v,w)z for all v, win 7,M. The z is called
the normal curvature vector of M at p . A Lorentzian surface is totally
umblic provided every point of M is umblic. Note that if M is totally
umblic, then there is a smooth normal vector field Z on M, called the
normal curvature vector field of M such that h(V,W) = g(V,W)Z for
all C'*° tangent vector fields V,W on M.

Our purpose is to show that there is only one kind of nontrivial

totally umbilic Lorentzian surfaces in L”, say pseudospheres in L3 C
L™

2. Main Theorems

Let M be a Lorentzian surface in L. Note that T,(M) is a 2 di-
mensional subspace of T,L™ = L™ for any p € M. At first, consider the
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causal characters of T,,(M) and its orthogonal complement with respect
to g in L™,
THEOREM 2.1. Let V be a k-dimensional subspace of L™. Then
exactly one of the following is true:
(1) V = L*, and g | V is nondegenerate,
(2) V = E*, and g | V is nondegenerate,
(3) g | V is degenerate, and in this case (and only in this case)
we may write V = E*1 @ Span¢ , where G(¢,£) = 0 and € is
orthogonal to E*~1.

Proof. See [1].

According to Theorem 2.1, we know that T,,(M) is isomorphic to L?
and its orthogonal complement is isomorphic to E™?~2.

It is well known that local isothermal coordinates on M compatible
with the orientation of M can be always given. By (z,y), we always
denote isothermal coordinates compatible with the orientation on M
with ;% timelike.

DEFINITION. Let n > 2. A pseudosphere of radius » > 0 in L™t is
the hyperquadric

Stp,r) ={ge L™ |gg—p,g—p) =1%}
with dimension n and index 1.

A totally umbilic Lorentzian surface in L? can be easily classified
using elementary techniques as in the proof of Theorem 2.2.

THEOREM 2.2. If M is a connected totally umbilic Lorentzian sur-
face in L, then M is a portion of a timelike plane or a pseudosphere.

Proof. Choose an isothermal parameter (z,y) so that M is defined
locally by a map X(z,y) = (21,22, x3) € L% Denote X, by 0; and X,
by 02. Then

Dalaj = Vaﬁj -+ h(&-, 8]').

Let N be the unit normal vector field on M. By Theorem 2.1, it must
be spacelike. Note that it may not be defined globally if M is not
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orientable (and time-orientable.) Consider the smooth function f =
9(N,Z), where Z is a normal curvature vector field on M such that
h(V,W) = ¢g(V,W)Z for any smooth tangent vector fields V, Won M.
Note that Z = fN. Since 0 = §;9(N, N) = 2g(N, Dg,N), Dy, N is a
local smooth tangent vector field on M. Since

and
0= ?(Da,-aj,N) +§(aj>DaiN) )
we have
G(Da,N,0;) = —fg(8;, 0;)
fori, j = 1, 2. Therefore, Dy, N = — f0;.
Consequently,

Daj DB,-N = — 8J(f)8z — ng)jaq'
and

Dy, Dy N = — 0i(f)0; — fDs, 05 .

From the above we have
(0;£)0: = (0:£)0; .

Then the linear independency of 0; and 9, tells us that Vf = 0. Hence
fis constant.

f = 0 implies Z = 0 and in turn M is locally a plane.

When f = ¢ (¢ # 0), consider N and 8; as a smooth function from
an open set U C R? to L3, Since Dy, N = —cd;, N = —cX + v
for some vy € L3.

From this we obtain

N Vo
X(.’L‘,y) - -Z - ?
and
Vo = N N
g(X(z,y) —,X(w,y)——c—)—g( = c)
1
-2

11



Seong-Kowan Hong
Therefore X lies in a pseudosphere Sf(lc‘l, ﬁ) This local argument
can be extended to the global argument using continuation along a path
in M. ]

Now we know there is only one kind of nontrivial Lorentzian surfaces
which are totally umbilic in L®. But what about a totally umbilic
Lorentzian surface in L™(n > 3)? The next theorem tells us that only
pseudosperes in 3-dimensional affine subspaces of L™ are the nontrivial
totally umbilic Lorentzian surfaces in L™.

THEOREM 2.3. Let M be a totally umbilic Lorentzian surface in L™
(n > 3). Then it is in fact either a timelike affine plane isomorphic to

L? or a pseudosphere in a 3-dimensional affine subspace isomorphic to
L3 in L™

To prove the theorem, we need to know about the Lorentzian version
of the structural equations and parallel distribution along M.

PROPOSITION 2.4. Let e!,--- €™ be an orthonormal moving frame
on L™ and let ¢*’s be the dual 1-forms, where e' is timelike. Then there
exist unique 1-forms w;; (called the connection forms) such that

(1) wij = —wjs,
(2) d¢' = — >, ciwin A BF,
(3) dwij = — > erwik A wij,

whereey = -l ande; =1ifj # 1.
Proof. Define w;; by w;;(X) =g(e*, Dxe?). Since
0=9(¢', Dxe’) +G(Dxe',€e’)
we have w;;(X) = —wj;(X) for any C* vector field X in L™.

Consider the moving frames el,--- ,e", with a little abuse of nota-
tion, as an R"-valued function €' : R — R™. Then we can consider
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dI and de*’s as R"-valued 1-forms. Since d> = 0, we have
0 =d*I
=d(>_¢' nel)

=Y (dd')e’ =) ¢F Adet
i k
=Y (dg)e’ — DAY e
i k i
= Z(dq{)i - Zeiqﬁk A wik)e
i k
Setting the coefficient of each e equal to 0, we obtain

d¢* = — Z eiwik A ¢F
k

We also have
0= d%e’
== Zeidw,-jei - ZEkwkj A dek
i k
= Z(Eidwij - Zé‘i&kwkj A wik)ei y
i k
from which we immediately deduce

dw,-j = — E ExWik N Wiy O
k

LEMMA 2.5. Let Z be a normal curvature vector field on a totally
umbilic Lorentzian surface M in L"™. Then g(Z, Z) is constant every-
where on M.
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Proof. Since Z is a C'™ spacelike vector field in L™ on M by Theorem
2.1, 9(Z, Z) is a nonnegative C*> function.

If §(Z, Z) vanishes everywhere, then there is nothing to prove.

Suppose there is p € M such that §(Z, Z)(p) > 0. In a neighborhood
of p, we choose an orthonomal moving frame e!,¢? on M, where el
is timelike, and complete to an adapted orthonormal moving frame
el,---,e™ with the unit spacelike vector field €3 in Zdirection. Then,

for j = 1,2 and X tangent to M, we have
wij(X) = g(eia Dxej)

_[VIZ Zjg(Xe) i3
0 1 >3

which means that on TM we have

(1) W3j = &j Vg(Za Z)¢J

wijZO, ife >3

Denote 1/g(Z,Z) by A. From (1) and the second structural equation
we find that on TM we have

dws; = g;dA N (Z)] + 8j/\d¢j

= - E ExW3ak N Wkj

(2) k
2
= -2 oF Awy
k=1

while the first structual equation gives

2
d¢? = = ejwin A ¢
k=1
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so we find that
gjAANY =0 for 7=1,2.

Hence dA = 0 and so /g(Z, Z) is constant around p. This implies
that {g € M | g(Z,Z)(¢) =9(Z,Z)(p)} is a nonempty open and closed
subset of M. Therefore §(Z, Z) is constant everywhere since M is con-
nected. [J

LEMMA 2.6. Let A be a k-dimensional distribution along the curve
¢: la,b] — L™ with -‘;—f € A(t). Suppose A is parallel along c¢. Then c is
a curve in some k-dimensional plane W C L™, and W is just exp(A(t))
for any t.

Proof. Let W = A(a), considered as a k-dimensional plane in L".
Then Wis isometric to L¥, E¥, or EF~' @ span{¢}, where £ is a nonzero
lightlike vector in L™. Without loss of generality we may assume W is
Lk, E¥ or H* = {(z,z,y1, - ,yk—1,0,- - - ,0) € ™ | z,y; € R}.

Case 1. W = L*.

If ¢ does not lie entirely in W, then by the mean value theorem,
some tangent vector ¢/(t) has a nonzero #th component for some i > k.
But this is impossible, because ¢'(t) € A(t) and A(t) is parallel to
W = A(a).

Since each A(t) is parallel to W = A(a) and also contains the points
c(t) in W, each A(t) must be equal to W, when A(t) is considered as a
k-dimensional plane. In other words, W = exp(A(t)) for all ¢.

Case 2. W = EF.

The exact same proof as in case 1 may be applied here with W =
0® EF.

Case 3. W = H* C LF+1.

Since ¢'(t) € A(t) and A(t) is parallel to W = A(a), cj(t) = ch(t)
for any t and cj(t) = 0 for ¢ > k + 1, and result is proved in this case.
O

We also need the converse of this assertion.

LEMMA 2.7. Let A be a smooth k-dimensional distribution along
c: |a,b] — L™. Suppose the induced covariant derivative % belongs
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to A whenever V is a smooth vector field along ¢ belonging to A. Then
A is parallel along c.

Proof. The proof given in [5, pp.41-42] works here. [

LEMMA 2.8. Let M be a connected Lorentzian surface in L™ and let
A be a smooth k-dimensional distribution along M such that T,M C
A(p) for all p € M. Suppose that A is parallel along every curve c in
M. Then M lies in some k-dimensional plane W C L™.

Proof. Choose a point p € M and let W be the k-dimensional plane
of L™ with exp(A(p)) = W. For any ¢ € M, choose a curve c¢: [0,1] —
M C L™ with ¢(0) = p, and ¢(1) = ¢. Since T,M C A(p) for all
p € M, d(t) € Alc(t)) for all t € [0,1]. Hence, Lemma 2.6 applied
to the distribution ¢ — A(e(t)) along ¢, implies that ¢ lies in the k-
dimensional plane W = exp(A(0)) C L™, because exp A(c(t)) = W for
all t. (Of course W may be degenerate.) O

Now we are ready to prove the Theorem 2.3.

Proof of Theorem 2.8. Let Z be the normal curvature vector field on
M.

Case 1. g(Z,Z) =0 on M.

Let p € M C L™ Choose an adapted moving frame e!,e?, ... e
of L™ so that e!,e? becomes a moving frame of M around p. Then,
for ¢ near p, Z(q) = Y_p_3Zk(g)e*(q) and from 0 = g(Z,Z)(q) =
> h_3 Z%(q) we have Z = 0 near p, and on the whole M. Therefore, M
is a part of a timelike plane in L™.

Case 2. g(Z,Z) is a positive constant function on M.

Denote the constant function 1/g(Z, Z) by A. By (1),

n 2
(4) DX63 = ZEkwkg(X)ek = Zwka(X)gk = —2X.
kil k"iil

We also have

3
(5) Dxej = —wlj(X)el + Zwkjek, 7 =12
k=2
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Let A be the 3-dimensional C* distribution on M with A(P) = M, +
R - €3(p). Equation(4),(5) and Lemma 2.7 shows that A is parallel
along every curve lying in M. So Lemma 2.8 implies that M lies in a
3-dimensional plane W of L™. Since A(p) 2 L3 and exp(A(p)) = W,
we know that W has an index 1 and therfore W = L3 c L.

Next,we have to show that M lies in a pseudosphere of radius % Let
P be the position vector field on L™. Then Dx P = X for all tangent
vector field X to M in L™, and so we can write (4) as

Dx(e®+AP)=0

Thus the vector field €3 + AP is parallel along M. Identifying tangent
vectors of M with elements of L™, this means that €3+ AP is a constant

3
vector vp on M, so we have p = v—"%(m for all p € M, which means

that M lies in pseudosphere with radius %, center 5. This completes

the proof. [
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