TOTALLY UMBILIC LORENTZIAN SURFACES EMBEDDED IN L^n

SEONG-KOWAN HONG

1. Introduction

Define $\overline{g}(v,w) = -v_1w_1 + \cdots + v_nw_n$ for v, w in \mathbb{R}^n . \mathbb{R}^n together with this metric is called the *Lorentzian n-space*, denoted by \mathbb{L}^n , and \mathbb{R}^n together with the Euclidean metric is called the *Euclidean n-space*, denoted by \mathbb{E}^n . A *Lorentzian surface* in \mathbb{L}^n means an orientable connected 2-dimensional Lorentzian submanifold of \mathbb{L}^n equipped with the induced Lorentzian metric g from \overline{g} .

Let M be a Lorentzian surface in L^n , D the flat Levi-Civita connection on L^n , ∇ the induced connection on M, and h the second fundamental form on M. A point p of M is umbilic if there is a normal vector z such that h(v,w)=g(v,w)z for all v, w in T_pM . The z is called the normal curvature vector of M at p. A Lorentzian surface is totally umblic provided every point of M is umblic. Note that if M is totally umblic, then there is a smooth normal vector field Z on M, called the normal curvature vector field of M such that h(V,W)=g(V,W)Z for all C^∞ tangent vector fields V,W on M.

Our purpose is to show that there is only one kind of nontrivial totally umbilic Lorentzian surfaces in L^n , say pseudospheres in $L^3 \subset L^n$.

2. Main Theorems

Let M be a Lorentzian surface in L^n . Note that $T_p(M)$ is a 2 dimensional subspace of $T_pL^n \cong L^n$ for any $p \in M$. At first, consider the

Received November 27, 1995. Revised December 9, 1996.

1991 AMS Subject Classification: 53B30, 53C50.

Key words and phrases: totally umbilic, Lorentzian surface, pseudosphere.

causal characters of $T_p(M)$ and its orthogonal complement with respect to \overline{g} in L^n .

THEOREM 2.1. Let V be a k-dimensional subspace of L^n . Then exactly one of the following is true:

- (1) $V = L^k$, and $\overline{g} \mid V$ is nondegenerate,
- (2) $V = E^k$, and $\overline{g} \mid V$ is nondegenerate,
- (3) $\overline{g} \mid V$ is degenerate, and in this case (and only in this case) we may write $V = E^{k-1} \oplus Span\xi$, where $\overline{g}(\xi,\xi) = 0$ and ξ is orthogonal to E^{k-1} .

Proof. See [1].

According to Theorem 2.1, we know that $T_p(M)$ is isomorphic to L^2 and its orthogonal complement is isomorphic to E^{n-2} .

It is well known that local isothermal coordinates on M compatible with the orientation of M can be always given. By (x, y), we always denote isothermal coordinates compatible with the orientation on M with $\frac{\partial}{\partial x}$ timelike.

DEFINITION. Let $n \geq 2$. A pseudosphere of radius r > 0 in L^{n+1} is the hyperquadric

$$S_1^n(p,r) = \{ q \in L^{n+1} \mid \overline{q}(q-p,q-p) = r^2 \}$$

with dimension n and index 1.

A totally umbilic Lorentzian surface in L^3 can be easily classified using elementary techniques as in the proof of Theorem 2.2.

THEOREM 2.2. If M is a connected totally umbilic Lorentzian surface in L^3 , then M is a portion of a timelike plane or a pseudosphere.

Proof. Choose an isothermal parameter (x,y) so that M is defined locally by a map $X(x,y)=(x_1,x_2,x_3)\in L^3$. Denote X_x by ∂_1 and X_y by ∂_2 . Then

$$D_{\partial_i}\partial_j = \nabla_{\partial_i}\partial_j + h(\partial_i,\partial_j).$$

Let N be the unit normal vector field on M. By Theorem 2.1, it must be spacelike. Note that it may not be defined globally if M is not

orientable (and time-orientable.) Consider the smooth function $f = \overline{g}(N, Z)$, where Z is a normal curvature vector field on M such that h(V, W) = g(V, W)Z for any smooth tangent vector fields V, W on M. Note that Z = fN. Since $0 = \partial_j \overline{g}(N, N) = 2\overline{g}(N, D_{\partial_j}N)$, $D_{\partial_j}N$ is a local smooth tangent vector field on M. Since

$$\overline{g}(D_{\partial_i}\partial_j,N)=f\overline{g}(\partial_i,\partial_j)$$

and

$$0 = \overline{g}(D_{\partial_i}\partial_j, N) + \overline{g}(\partial_j, D_{\partial_i}N) ,$$

we have

$$\overline{g}(D_{\partial_i}N,\partial_j) = -f\overline{g}(\partial_i,\partial_j)$$

for i, j = 1, 2. Therefore, $D_{\partial_i} N = -f \partial_i$. Consequently,

$$D_{\partial_j} D_{\partial_i} N = -\partial_j(f) \partial_i - f D_{\partial_j} \partial_i$$

and

$$D_{\partial_i} D_{\partial_j} N = -\partial_i(f) \partial_j - f D_{\partial_i} \partial_j .$$

From the above we have

$$(\partial_i f)\partial_i = (\partial_i f)\partial_i$$
.

Then the linear independency of ∂_1 and ∂_2 tells us that $\nabla f = 0$. Hence f is constant.

 $f \equiv 0$ implies $Z \equiv 0$ and in turn M is locally a plane.

When $f \equiv c$ ($c \neq 0$), consider N and ∂_i as a smooth function from an open set $U \subset R^2$ to L^3 . Since $D_{\partial_i}N = -c \partial_i$, $N = -cX + v_0$ for some $v_0 \in L^3$.

From this we obtain

$$X(x,y) = \frac{N}{c} - \frac{v_0}{c}$$

and

$$\overline{g}(X(x,y) - \frac{v_0}{c}, X(x,y) - \frac{v_0}{c}) = \overline{g}(-\frac{N}{c}, -\frac{N}{c})$$
$$= \frac{1}{c^2}$$

Seong-Kowan Hong

Therefore X lies in a pseudosphere $S_1^2(\frac{v_0}{c}, \frac{1}{|c|})$. This local argument can be extended to the global argument using continuation along a path in M. \square

Now we know there is only one kind of nontrivial Lorentzian surfaces which are totally umbilic in L^3 . But what about a totally umbilic Lorentzian surface in $L^n(n > 3)$? The next theorem tells us that only pseudosperes in 3-dimensional affine subspaces of L^n are the nontrivial totally umbilic Lorentzian surfaces in L^n .

THEOREM 2.3. Let M be a totally umbilic Lorentzian surface in L^n (n > 3). Then it is in fact either a timelike affine plane isomorphic to L^2 or a pseudosphere in a 3-dimensional affine subspace isomorphic to L^3 in L^n .

To prove the theorem, we need to know about the Lorentzian version of the structural equations and parallel distribution along M.

PROPOSITION 2.4. Let e^1, \dots, e^n be an orthonormal moving frame on L^n and let ϕ^i 's be the dual 1-forms, where e^1 is timelike. Then there exist unique 1-forms ω_{ij} (called the connection forms) such that

- (1) $\omega_{ij} = -\omega_{ji}$,
- (2) $d\phi^i = -\sum_k \varepsilon_i \omega_{ik} \wedge \phi^k$,
- (3) $d\omega_{ij} = -\sum_{k}^{n} \varepsilon_{k} \omega_{ik} \wedge \omega_{kj}$,

where $\varepsilon_1 = -1$ and $\varepsilon_j = 1$ if $j \neq 1$.

Proof. Define ω_{ij} by $\omega_{ij}(X) = \overline{g}(e^i, D_X e^j)$. Since

$$0 = \overline{q}(e^i, D_X e^j) + \overline{q}(D_X e^i, e^j) \quad ,$$

we have $\omega_{ij}(X) = -\omega_{ji}(X)$ for any C^{∞} vector field X in L^n .

Consider the moving frames e^1, \dots, e^n , with a little abuse of notation, as an \mathbb{R}^n -valued function $e^i: \mathbb{R}^n \longrightarrow \mathbb{R}^n$. Then we can consider

Totally umbilic Lorentzian surfaces embedded in L^n

dI and de^{i} 's as R^{n} -valued 1-forms. Since $d^{2}=0$, we have

$$\begin{split} 0 &= d^2 I \\ &= d(\sum_i \phi^i \wedge e^i) \\ &= \sum_i (d\phi^i) e^i - \sum_k \phi^k \wedge de^k \\ &= \sum_i (d\phi^i) e^i - \sum_k \phi^k \wedge \sum_i \varepsilon_i \omega_{ik} e^i \\ &= \sum_i (d\phi^i - \sum_k \varepsilon_i \phi^k \wedge \omega_{ik}) e^i \end{split}$$

Setting the coefficient of each e^i equal to 0, we obtain

$$d\phi^i = -\sum_k arepsilon_i \omega_{ik} \wedge \phi^k$$

We also have

$$egin{aligned} 0 &= d^2 e^j \ &= \sum_i arepsilon_i d\omega_{ij} e^i - \sum_k arepsilon_k \omega_{kj} \wedge de^k \ &= \sum_i (arepsilon_i d\omega_{ij} - \sum_k arepsilon_i arepsilon_k \omega_{kj} \wedge \omega_{ik}) e^i \end{aligned}$$

from which we immediately deduce

$$d\omega_{ij} = -\sum_{k} \varepsilon_k \omega_{ik} \wedge \omega_{kj} \qquad \qquad \Box$$

LEMMA 2.5. Let Z be a normal curvature vector field on a totally umbilic Lorentzian surface M in L^n . Then $\overline{g}(Z, Z)$ is constant everywhere on M.

Proof. Since Z is a C^{∞} spacelike vector field in L^n on M by Theorem 2.1, $\overline{g}(Z,Z)$ is a nonnegative C^{∞} function.

If $\overline{g}(Z, Z)$ vanishes everywhere, then there is nothing to prove.

Suppose there is $p \in M$ such that $\overline{g}(Z,Z)(p) > 0$. In a neighborhood of p, we choose an orthonomal moving frame e^1, e^2 on M, where e^1 is timelike, and complete to an adapted orthonormal moving frame e^1, \dots, e^n with the unit spacelike vector field e^3 in Z-direction. Then, for j = 1, 2 and X tangent to M, we have

$$egin{aligned} \omega_{ij}(X) &= \overline{g}(e^i, D_X e^j) \ &= \left\{ egin{aligned} \sqrt{\overline{g}(Z,Z)} \overline{g}(X,e_j) & i &= 3 \ 0 & i &> 3 \end{aligned}
ight. \end{aligned}$$

which means that on TM we have

(1)
$$\omega_{3j} = \varepsilon_j \sqrt{\overline{g}(Z, Z)} \phi^j$$
$$\omega_{ij} = 0, \quad \text{if } i > 3$$

Denote $\sqrt{\overline{g}(Z,Z)}$ by λ . From (1) and the second structural equation we find that on TM we have

$$d\omega_{3j} = \varepsilon_j d\lambda \wedge \phi^j + \varepsilon_j \lambda d\phi^j$$

$$= -\sum_k \varepsilon_k \omega_{3k} \wedge \omega_{kj}$$

$$= -\lambda \sum_{k=1}^2 \phi^k \wedge \omega_{kj}$$

while the first structual equation gives

(3)
$$d\phi^{j} = -\sum_{k=1}^{2} \varepsilon_{j} \omega_{jk} \wedge \phi^{k}$$
$$= \sum_{k=1}^{2} \varepsilon_{j} \phi^{k} \wedge \omega_{jk}$$
$$= -\varepsilon_{j} \sum_{k=1}^{2} \phi^{k} \wedge \omega_{kj}$$

so we find that

$$\varepsilon_j d\lambda \wedge \phi^j = 0$$
 for $j = 1, 2$.

Hence $d\lambda \equiv 0$ and so $\sqrt{\overline{g}(Z,Z)}$ is constant around p. This implies that $\{q \in M \mid \overline{g}(Z,Z)(q) = \overline{g}(Z,Z)(p)\}$ is a nonempty open and closed subset of M. Therefore $\overline{g}(Z,Z)$ is constant everywhere since M is connected. \square

LEMMA 2.6. Let Δ be a k-dimensional distribution along the curve $c:[a,b] \longrightarrow L^n$ with $\frac{dc}{dt} \in \Delta(t)$. Suppose Δ is parallel along c. Then c is a curve in some k-dimensional plane $W \subset L^n$, and W is just $\exp(\Delta(t))$ for any t.

Proof. Let $W = \Delta(a)$, considered as a k-dimensional plane in L^n . Then W is isometric to L^k , E^k , or $E^{k-1} \oplus span\{\xi\}$, where ξ is a nonzero lightlike vector in L^n . Without loss of generality we may assume W is L^k , E^k or $H^k = \{(x, x, y_1, \dots, y_{k-1}, 0, \dots, 0) \in L^n \mid x, y_i \in R\}$.

Case 1. $W = L^k$.

If c does not lie entirely in W, then by the mean value theorem, some tangent vector c'(t) has a nonzero i-th component for some i > k. But this is impossible, because $c'(t) \in \Delta(t)$ and $\Delta(t)$ is parallel to $W = \Delta(a)$.

Since each $\Delta(t)$ is parallel to $W = \Delta(a)$ and also contains the points c(t) in W, each $\Delta(t)$ must be equal to W, when $\Delta(t)$ is considered as a k-dimensional plane. In other words, $W = \exp(\Delta(t))$ for all t.

Case 2. $W = E^k$.

The exact same proof as in case 1 may be applied here with $W=0\oplus E^k.$

Case 3. $W = H^k \subset L^{k+1}$.

Since $c'(t) \in \Delta(t)$ and $\Delta(t)$ is parallel to $W = \Delta(a)$, $c'_1(t) = c'_2(t)$ for any t and $c'_i(t) = 0$ for i > k + 1, and result is proved in this case. \Box

We also need the converse of this assertion.

LEMMA 2.7. Let Δ be a smooth k-dimensional distribution along $c:[a,b]\longrightarrow L^n$. Suppose the induced covariant derivative $\frac{DV}{dt}$ belongs

to Δ whenever V is a smooth vector field along c belonging to Δ . Then Δ is parallel along c.

Proof. The proof given in [5, pp.41-42] works here. \square

LEMMA 2.8. Let M be a connected Lorentzian surface in L^n and let Δ be a smooth k-dimensional distribution along M such that $T_pM \subset \Delta(p)$ for all $p \in M$. Suppose that Δ is parallel along every curve c in M. Then M lies in some k-dimensional plane $W \subset L^n$.

Proof. Choose a point $p \in M$ and let W be the k-dimensional plane of L^n with $\exp(\Delta(p)) = W$. For any $q \in M$, choose a curve $c : [0,1] \to M \subset L^n$ with c(0) = p, and c(1) = q. Since $T_pM \subset \Delta(p)$ for all $p \in M$, $c'(t) \in \Delta(c(t))$ for all $t \in [0,1]$. Hence, Lemma 2.6 applied to the distribution $t \to \Delta(c(t))$ along c, implies that c lies in the k-dimensional plane $W = \exp(\Delta(0)) \subset L^n$, because $\exp\Delta(c(t)) = W$ for all t. (Of course t may be degenerate.) \Box

Now we are ready to prove the Theorem 2.3.

Proof of Theorem 2.3. Let Z be the normal curvature vector field on M.

Case 1. $\overline{g}(Z,Z) \equiv 0$ on M.

Let $p \in M \subset L^n$. Choose an adapted moving frame e^1, e^2, \dots, e^n of L^n so that e^1, e^2 becomes a moving frame of M around p. Then, for q near p, $Z(q) = \sum_{k=3}^n Z_k(q)e^k(q)$ and from $0 = \overline{g}(Z, Z)(q) = \sum_{k=3}^n Z_k^2(q)$ we have $Z \equiv 0$ near p, and on the whole M. Therefore, M is a part of a timelike plane in L^n .

Case 2. $\overline{g}(Z,Z)$ is a positive constant function on M.

Denote the constant function $\sqrt{\overline{g}(Z,Z)}$ by λ . By (1),

(4)
$$D_X e^3 = \sum_{k=1}^n \varepsilon_k \omega_{k3}(X) e^k = \sum_{k=1}^2 \omega_{k3}(X) e^k = -\lambda X.$$

We also have

(5)
$$D_X e^j = -\omega_{1j}(X)e^1 + \sum_{k=2}^3 \omega_{kj} e^k, \qquad j = 1, 2.$$

Let Δ be the 3-dimensional C^{∞} distribution on M with $\Delta(P) = M_p + \mathbb{R} \cdot e^3(p)$. Equation(4),(5) and Lemma 2.7 shows that Δ is parallel along every curve lying in M. So Lemma 2.8 implies that M lies in a 3-dimensional plane W of L^n . Since $\Delta(p) \cong L^3$ and $\exp(\Delta(p)) = W$, we know that W has an index 1 and therfore $W \cong L^3 \subset L^n$.

Next, we have to show that M lies in a pseudosphere of radius $\frac{1}{\lambda}$. Let P be the position vector field on L^n . Then $D_X P = X$ for all tangent vector field X to M in L^n , and so we can write (4) as

$$D_X(e^3 + \lambda P) = 0$$

Thus the vector field $e^3 + \lambda P$ is parallel along M. Identifying tangent vectors of M with elements of L^n , this means that $e^3 + \lambda P$ is a constant vector v_0 on M, so we have $p = \frac{v_0 - e^3(p)}{\lambda}$ for all $p \in M$, which means that M lies in pseudosphere with radius $\frac{1}{\lambda}$, center $\frac{v_0}{\lambda}$. This completes the proof. \square

References

- Graves, L., Codimension one isometric immersions between Lorentzian spaces, Trans. Amer. Math. Soc 252 (1979), 367-392.
- Graves, L., On codimension one isometric immersions between indefinite space forms, Tsukuba J. Math. 3 (1979), 17-29.
- Hoffman, D. and R.Osserman, The geometry of the generalized Gauss map, Memories of American Math. Soc. 28 (1980).
- O'Neil, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, NY, 1983.
- Spivak, M, Introduction to Differential Geometry, vol. IV, Publish or Perish Inc., Berkeley, CA, 1979.

DEPARTMENT OF MATHEMATICS EDUCATION, PUSAN NATIONAL UNIVERSITY, PUSAN 609-735, KOREA

E-mail: skhong@hyowon.pusan.ac.kr