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ON MARCINKIEWICZ’S TYPE LAW FOR FUZZY RANDOM

SETS

JOONG-SUNG KWON AND HONG-TAE SHIM∗

Abstract. In this paper, we will obtain Marcinkiewicz’s type limit laws for

fuzzy random sets as follows : Let {Xn|n ≥ 1} be a sequence of independent
identically distributed fuzzy random sets and E∥Xi∥rρp < ∞ with 1 ≤ r ≤

2. Then the following are equivalent: Sn/n
1
r → 0̃ a.s. in the metric ρp

if and only if Sn/n
1
r → 0̃ in probability in the metric ρp if and only if

Sn/n
1
r → 0̃ in L1 if and only if Sn/n

1
r → 0̃ in Lr where Sn =

∑n
i=1 Xi.
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1. Introduction

The study of the fuzzy random sets, defined as measurable mappings on a
probability space, was initiated by Kwakernaak [12] where useful basic properties
were developed. Puri and Ralescu [9] used the concept of fuzzy random variables
in generating results for random sets to fuzzy random sets. Kruse [8] proved a
strong law of large numbers for independent identically distributed fuzzy random
variables. Artstein and Vitale [1] proved a strong law of large numbers(SLLN) for
Rp-valued random sets and Cressie [3] proved a SLLN for some paticular class of
Rp-valued random sets. Using R̊adstrom embedding(e.g. R̊adstrom [14]), Puri
and Ralescu [12] proved a SLLN for Banach space valued random sets and they
also proved SLLN for fuzzy random sets, which generalized all of previous SLLN
for random sets. In recent year, Joo, Kim and Kwon [6] proved Chung’s type law
of large numbers for fuzzy random variables and Kwon and Shim [11] obtained
a uniform strong law of large numbers for partial sum processes of fuzzy random
sets. In this paper we obtain Marcinkiewicz’s type laws for fuzzy random sets in
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the Euclidean space under the assumption that WLLN holds. The proofs of the
results are based heavily on isometrical embeddings of the fuzzy sample spaces,
endowed with Lp-metrics, into Lp-spaces. Our results give the fuzzy version of
Marcinkiewicz’s type law of large numbers in general Banach spaces.

2. Preliminaries

Let K(Rn) (Kc(R
n)) be the collection of nonempty compact (and convex )

subsets of Euclidean space Rn. The set can be viewed as a linear structure
induced by the scalar multiplication and the Minkowski addition, that is

λA = {λa : a ∈ A}, A+B = {a+ b : a ∈ A, b ∈ B}

for all A, B ∈ K(Rn) and λ ∈ R. If d is the Hausdoff metric on K(Rn) which,
for A, B ∈ K(Rn), is given by

d(A,B) = max{sup
a∈A

inf
b∈B

|a− b|, sup
b∈B

inf
a∈A

|a− b|}

where | · | denotes the Euclidean norm. Then (K(Rn), d) is a complete separable
metric space [4,10].

A fuzzy set of Rn is a mapping A : Rn → [0, 1]. We will denote by Aα the
α-level set of A (that is Aα = {x ∈ Rn : A(x) ≥ α} ) for all α ∈ (0, 1] and by
A0 the closure of the support of A(that is A0 = cl{x ∈ Rn : A(x) > 0} ).

Let Fc(R
n)(Fcoc(R

n)) be the class of the fuzzy sets A satisfying the following
conditions

(1) A1 ̸= ∅,
(2) A0 is compact, and
(3) A is upper semi continuous
((4) Aα is convex for all α ∈ [0, 1]).
And Fb

c (R
n)(Fb

coc(R
n)) is the subset of Fc(R

n)( Fcoc(R
n)) with bounded

support.
Given a measurable space (Ω,A) and the metric space (K(Rn), d), a random

set (or as a random compact set) is associated with a Borel measurable mapping
X : Ω → K(Rn). If X : Ω → K(Rn) is a set-valued mapping, then X is a random
set if and only if X−1(C) = {ω ∈ Ω : X(ω) ∩ C ̸= ∅} ∈ A for all C ∈ K(Rn).

If X is a random set, the mapping denoted by ∥X∥d and defined by

∥X(ω)∥d = d(X, 0̃)(ω) = sup
x∈X(ω)

|x|

for all ω ∈ Ω, is a random variable, where 0̃ is the fuzzy set where 0̃(0) = 1 and
0̃(x) = 0 otherwise.

A support function of a non-void bounded subset K of Rn is defined by

sK : Rn → R : x 7→ sup
y∈K

< x, y >

where < x, y > denotes the standard scalar product of the vectors x and y.
Support functions sK are uniquely associated with the subsets K ∈ Kc(R

n)
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and preserve addition and nonnegative scalar multiplication when we restricted
ourselves to K(Rn), i.e.

sK+L = sK + sL, sλK = λsK

Now we endow Fc(R
n) with the initial topology generated by the mappings

πα : Fc(R
n) → K(Rn), A 7→ Aα, α ∈ (0, 1] ∩Q

then the topology mentioned above enables us to introduce a measurability con-
cept for defining fuzzy random variable. We call a mapping X : Ω → Fc(R

n)
fuzzy random variable over (Ω,A, µ) if it is A-measurable over the initial topol-
ogy.

For a real number p ≥ 1 and A, B ∈ Fc(R
n), define

dp(A,B) = (

∫ 1

0

d(Aα, Bα)
pdα)1/p

and

ρp(A,B) = (

∫ 1

0

∫
Sn−1

|sAα − sBα |pλSn−1

dα)1/p

where λSn−1

denotes the unit Lebesgue measure on the unit sphere in Rn. Then
dp(ρp) becomes a separable metric on Fb

c (R
n) (Fb

coc(R
n)) with the relation ρp ≤

dp which induce the same topology
Now consider Lp([0, 1]×Sn−1), the Lp-space with respect to [0, 1]×Sn−1, the

obvious product σ-algebra and the product measure λ⊗λSn−1

. Then under the
Lp-norm ∥ ∥p we obtain Lp([0, 1]×Sn−1) as a separable Banach space. Next we
can embed Fb

coc(R
n) isometrically isomorphic into Lp([0, 1]×Sn−1) as a positive

cone (for details see [5,7]). Embedding Fb
coc(R

n) into Lp([0, 1]×Sn−1), we draw
a convergence theorem in Banach space. For 1 ≤ p < ∞, Lp([0, 1] × Sn−1) is
so called separable Banach space of type min(p, 2). It is known that separable
Banach spaces of type 2 is exactly those separable Banach space where the
classical strong law of large numbers for independent non-identically distributed
random variables holds.

3. Main Results

To prove the main theorem we will need the following lemmas. Lemma 1
connects two metric spaces Fb

coc(R
n) and Lp([0, 1]× Sn−1) isometrically.

Lemma 3.1. Let 1 ≤ p < ∞ be fixed. Then j : Fb
coc(R

n) → Lp([0, 1] × Sn−1)
by A 7→< s̃A > defines an injection mapping satisfying

(1) ∥j(A)− j(B)∥p = ρp(A,B)
(2) j(A+B) = j(A) + j(B)
(3) j(λA) = λj(A)
for any A,B ∈ Fb

coc(R
n) and λ ≥ 0(where s̃A : [0, 1] × Rn → R by (α, x) 7→

sAα(x)).

The following is a generalization of a classical result [15, p. 127-128].
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Lemma 3.2. Let {Xn|n ≥ 1} be a sequence of fuzzy random sets stochastically
dominated by X with E∥X∥rρp

< ∞ for 0 < r < ∞, that is, for any t > 0,

P (||Xn||ρp ≥ t) ≤ P (∥X∥ρp ≥ t). Then

(i)
∑∞

n=1
1

nβ/rE∥Xn∥βρp
I(∥Xn∥ρp ≤ n

1
n ) < ∞ for 0 < r < β

(ii)
∑∞

n=1
1

nα/rE∥Xn∥αρp
I(∥Xn∥ρp ≥ n

1
n ) < ∞ for 0 < α < r

Proof. . Notice that {∥Xn∥ρp |n ≥ 1} is a sequence of random variables stochas-
tically dominated by ∥X∥ρp . Now apply Stout’s result. �

Lemma 3.3 ([5]). Let {Xk|1 ≤ k ≤ n} be Fb
coc(R

n)-valued independent random

variables. Let Si =
∑i

k=1 Xk for i = 1, 2, 3, · · · , n and t > 0. Then

P ( max
1≤i≤n

∥Si∥ρp) ≤ 4 max
1≤i≤n

P (∥Si∥ρp > t/4).

Lemma 3.4 ([5]). Let {Xk|1 ≤ k ≤ n} be independent Fb
coc(R

n)-valued random
variables with E∥Xk∥rρp

< ∞ for k = 1, 2, · · ·n and 1 ≤ r ≤ 2. Then we have

E|∥Sn∥ρp − E∥Sn∥ρp |r ≤ Cr

n∑
k=1

E∥Xk∥rρp
.

where Cr is a positive constant depending only on r ; if r = 2 then it is possible
to take C2 = 4.

Theorem 3.5. Let {Xn|n ≥ 1} be a sequence of independent identically dis-
tributed Fb

coc(R
n)-valued fuzzy random variables with E∥Xi∥ρrp < ∞ for 1 ≤ r ≤

2 and let Sn =
∑n

i=1 Xi. Then the following are equivalent:

(i) Sn/n
1
r → 0̃ a.s. in the metric ρp;

(ii) Sn/n
1
r → 0̃ in probability in the metric ρp;

(iii) Sn/n
1
r → 0̃ in L1

(iv) Sn/n
1
r → 0̃ in Lr

Proof. Let j : Fb
coc(R

n) → Lp([0, 1]×Sn−1) be an isometry. Then {j◦Xn|n ≥ 1}
be a sequence of independent identically distributed random element in a Banach
space Lp([0, 1]× Sn−1). Since ∥X∥ρp = ∥j ◦X∥p, in what follow we use X and
j ◦X interchangeably.

Let X ′
n = Xn1(∥Xn∥ρp ≤ n

1
n ), X ′′

n = Xn1(∥Xn∥ρp > n
1
n ),

S′
n =

∑n
i=1X

′
i and S′′

n =
∑n

i=1X
′′
i .

First we show that (i) ⇐⇒ (ii) ⇐⇒ (iii) in L1. Since E∥Xi∥ρrp < ∞, we have

S′′
n/n

1
r → 0̃ a.s. and S′′

n/n
1
r → 0̃ in L1

Hence it is enough to show that

S′
n/n

1
r → 0̃ a.s. ⇐⇒ S′

n/n
1
r → 0̃ in probability

⇐⇒ S′
n/n

1
r → 0̃ in L1

.
Since

∑∞
n=1 E∥X ′

n∥ρp/n
2
n < ∞ by lemma 1, these equivalence hold by apply-

ing Theorem 5 in [5] to {X ′
n} with ϕ(x) = x2.
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Now it remains to show that (iii) =⇒ (iv). Assume that Sn/n
1
r → 0̃ in L1.

Then now

E∥Sn∥ρp < 2r−1E|∥Sn∥ρp − E∥Sn∥ρp |r + 2r−1(E∥Sn∥ρp)
r.

Thus it is enough to show that

1

n
E|∥Sn∥ρp − E∥Sn∥ρp |r −→ 0

From Lemma 4

E|∥Sn∥ρp − E∥Sn∥ρp |r = E|∥S′
n + S′′

n∥ρp − E∥Sn” + S′′
n∥ρp |r

≤ E(|∥S′
n∥ρp − E∥S′

n∥ρp |+ |∥S′′
n∥ρp − E∥S′′

n∥ρp |+ 2E∥S′′
n∥ρp)

r

≤ 22r−2E|∥S′
n∥ρp−E∥S′

n∥ρp |r+22r−2E||∥S′′
n∥ρp−E∥S′′

n∥ρp |r+22r−1(E∥S′′
n∥ρp)

r

≤ 22r−2(
n∑

i=1

E∥Xi∥2ρp
)

r
2 + 22r−2Cr(

n∑
i=1

E∥Xi∥rρp
+ 22r−1(

n∑
i=1

E∥X ′′
i ∥ρp)

r

By a standard calculation, we have
∑n

i=1 E∥X ′
i∥2ρp

/n2/r −→ 0,∑n
i=1 E∥X ′′

i ∥2ρp
/n −→ 0 and

∑n
i=1 E∥X ′′

i ∥1ρp
/n1/r −→ 0. Thus the proof is

completed. �

Remark 3.1. (1) For i.i.d real valued random variables, Pyke and Root [13]
showed that

E|X1|r < ∞ ⇐⇒ Sn/n
1
r → 0 a.s ⇐⇒ Sn/n

1
r → 0 in Lr.

(2) For i.i.d. B-valued random variables with E∥X1∥ < ∞ for 1 ≤ r < 2, Choi
and Sung [2] showed that

Sn/n
1
r → 0 a.s. ⇐⇒ Sn/n

1
r → 0 in probability

⇐⇒ Sn/n
1
r → 0 in Lr ⇐⇒ Sn/n

1
r → 0 in Lr.
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