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AN INDEPENDENT RESULT FOR ATTACHED PRIMES

OF CERTAIN TOR-MODULES

Pham Huu Khanh

Abstract. Let (R,m) be a Noetherian local ring, I an ideal of R, and A
an Artinian R-module. Let k ≥ 0 be an integer and r = Width>k(I,A)
the supremum of length of A-cosequence in dimension > k in I defined
by Nhan-Hoang [8]. It is shown that for all t ≤ r the sets

(
t⋃

i=0

AttR(TorR
i
(R/In, A)))≥k and

(
t⋃

i=0

AttR(TorR
i
(R/(an1

1 , . . . , a
n
l

l
), A)))≥k

are independent of the choice of n, n1, . . . , nl for any system of generators
(a1, . . . , al) of I.

1. Introduction

Throughout this paper, let (R,m) be a Noetherian local ring, I an ideal of
R. Let M be a finitely generated R-module, and A an Atinian R-module. For
a subset T of Spec(R) and an integer i ≥ 0, denote by (T )≥i the set of all prime
ideals p ∈ T such that dimR/p ≥ i.

In 1976, L. J. Ratliff [10] asked whether the set of associated prime ideals
AssR(R/In) is stable for large n. An affirmative answer was given by Ratliff
[10] for the case R is an domain. M. Brodmann [1] answered fully Ratliff’s
question not only for ring R, but also for module M . He proved that the sets
AssR(M/InM) and AssR(I

nM/In+1M) are stable for large n. As dual results,
R. Y. Sharp [12] proved that the sets of attached prime ideals AttR(0 :A In) and
AttR((0 :A In+1)/(0 :A In)) are stable for large n. Starting from the observa-

tion that M/InM ∼= TorR0 (R/In,M) and (0 :A In) ∼= Ext0R(R/In, A), L. Melk-
ersson and P. Schenlzel [6] developed the above results of Brodmann and Sharp.
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They proved that the sets AssR(Tor
R
i (R/In,M)) and AttR(Ext

i
R(R/In, A)) do

not depend on n for large n. In that paper, Melkersson and Schenlzel asked
whether the sequence AttR(Tor

R
i (R/In, A)) becomes constant for large n.

However, Katzman [4, Corollary 1.3] constructed an example of local ring
(R,m) of dimension 5 and two elements x, y ∈ m such that AssR(H

2

(x,y)R(R)) is

an infinite set. Therefore, the set
⋃

n∈N
AssR(Ext

2

R(R/In, R)) is infinite, where

I = (x, y)R. Hence,
⋃

n∈N
AttR(Tor

R
2 (R/In, E)) is infinite, where E in the

injective envelope of R/m which is an Artinian R-module. It implies that the

set AttR(Tor
R
2 (R/In, E)) is not stable for large n. Therefore, ones need to find

the conditions for the set
⋃

n∈N
AttR(Tor

R
i (R/In, A)) to be finite.

Following Nhan-Hoang [8], a sequence (x1, . . . , xr) of elements in m is called
an A-cosequence in dimension > k if xi 6∈ p for all p ∈ (AttR(0 :A (x1, . . .,
xi−1)R))>k for every i = 1, . . . , r. Then in [7], Nhan-Dung proved that the set

(
⋃

n∈N

AttR(Tor
R
t (R/In, A)))≥k

is finite for all t ≤ r, where r is the maximal length of an A-cosequence in
dimension > k in I. Moreover, they also proved that

(
⋃

n1,...,nl∈N

AttR(Tor
R
t (R/(an1

1
, . . . , anl

l ), A)))≥k

is finite for all t ≤ r, for any system of generators (a1, . . . , al) of I.
The main result of this paper is the following theorem.

Theorem 1.1. Let k ≥ 0 be an integer and r = Width>k(I, A). Then for all

t ≤ r we have

(

t
⋃

i=0

AttR(Tor
R
i (R/I,A)))≥k = (

t
⋃

i=0

AttR(Tor
R
i (R/In, A)))≥k

= (

t
⋃

i=0

AttR(Tor
R
i (R/(an1

1
, . . . , anl

l ), A)))≥k

for all n, n1, . . . , nl ∈ N and for any system of generators (a1, . . . , al) of I.

It should be mentioned that Theorem 1.1 shows that for all t ≤ r the sets

(
t
⋃

i=0

AttR(Tor
R
i (R/In, A)))≥k and (

t
⋃

i=0

AttR(Tor
R
i (R/(an1

1
, . . . , anl

l ), A)))≥k

are independent of the choice of n, n1, . . . , nl for any system of generators
(a1, . . . , al) of I. As a consequence, we get again the conclusion of Nhan-Dung
[7, Corollary 3.6], which says that if k = −1, then the sets

AttR(Tor
R
r (R/In, A)) and AttR(Tor

R
r (R/(an1

1
, . . . , anl

l ), A))
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are independent of the choice of n, n1, . . . , nl for any system of generators
(a1, . . . , al) of I, where r = Width(I, A) is the maximal length of aA-cosequence
in I (see Proposition 3.8).

This paper is divided into three sections. In the next section, we show some
auxiliary lemmas. The last section devotes to prove the main result of this
paper, Theorem 1.1 (see Theorem 3.4).

2. Preliminaries

The theory of secondary representation of a module was introduced by I.
G. Macdonald [5], which is in some sense dual to the theory of primary de-
composition. Following [5], any Artinian R-module A has a minimal secondary
representation A = A1+· · ·+Ar, where Ai is pi-secondary. The set {p1, . . . , pr}
is independent of the choice of a minimal secondary representation of A, and
it is denoted by AttR(A).

Next, we recall the definition of A-cosequence in dimension > k which was
first given by Nhan and Hoang in [8, Definition 2.4].

Definition 2.1. Let k ≥ −1 be an integer. A sequence (x1, . . . , xr) of elements
in m is called an A-cosequence in dimension > k if xi 6∈ p for all p ∈ (AttR(0 :A
(x1, . . . , xi−1)R))>k for every i = 1, . . . , r.

By Nhan and Dung [7, Theorem 2.8], if dimR(0 :A I) > k, then any A-
cosequence in dimension > k in I can be extended to a maximal one, and
all maximal A-cosequences in dimension > k in I has the same length. This
common length is called the width in dimension > k in I with respect to A
and denoted by Width>k(I, A). If dimR(0 :A I) ≤ k, then for every positive
integer r, we can choose an A-cosequence in dimension > k in I of length r,
in this case we set Width>k(I, A) = +∞. Note that the width in dimension
> −1 in I with respect to A exactly the width of A in I defined by A. Ooishi
[9] and it is denoted by Width(I, A).

For an ideal I of R, denote by Var(I) the set of all prime ideals p of R
containing I.

Lemma 2.2 ([5]). The set of all minimal elements of AttR(A) is exactly the

set of all minimal elements of Var(AnnR(A)). Moreover,

dimR(A) = max{dim(R/p) | p ∈ AttR(A)}.

Note that A has a natural structure as an ̂R-module. With this structure, a

subset of A is an R-submodule if and only if it is an ̂R-submodule. Therefore

A is an Artinian ̂R-module.
The following results are well-known and will be used in the sequel.

Lemma 2.3 ([2, 8.24 and 8.25]). AttR(A) = {̂p ∩R | ̂p ∈ AttR̂(A)}.
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Lemma 2.4. Let f : R → R′ be a ring homomorphism and L an R′-module.

Consider L as an R-module induced by f . Then we have

AssR(L) = {f−1(P) | P ∈ AssR′(L)}.

Denote by E = E(R/m) the injective envelope of R/m. The Matlis dual
D(A) of A is defined by D(A) = HomR(A,E). Note that D(A) = HomR(A,E)

= HomR̂(A,E). Moreover,D(A) is a finitely generated ̂R-module and by Sharp
[11, Theorem 2.3] we have

AssR̂(D(A)) = AttR̂(A).

Now we need to introduce the notion of poor filter sequence. An element
x ∈ R is called an M -poor filter regular if x /∈ p for all p ∈ AssR(M) \ {m}.
A sequence x1, . . . , xr of elements in R is called an M -poor filter sequence if
xi is (M/(x1, . . . , xi−1)M)-poor filter regular for all i = 1, . . . , r. It is clear
that a sequence x1, . . . , xr of elements in R is an M -filter sequence in sense
of Cuong-Schenzel-Trung [3] if and only if it is an M -poor filter sequence and
x1, . . . , xr ∈ m.

Lemma 2.5. Let k ≥ 0 be an integer. Assume that (x1, . . . , xr) is an A-
cosequence in dimension > k. Then (x̄1, . . . , x̄r) is a D(A)p̂-poor filter sequence

for all ̂p ∈ Var(AnnR̂ A) satisfying dim(R/(̂p ∩ R)) ≥ k. Here x̄i is the image

of xi in ̂Rp̂ for i = 1, . . . , r.

Proof. Let (x1, . . . , xr) be an A-cosequence in dimension > k. Assume that
there exists ̂p ∈ Var(AnnR̂ A) satisfying dim(R/(̂p∩R)) ≥ k such that (x̄1, . . .,

x̄r) is not an D(A)p̂-poor filter sequence. Then x̄i ∈ q̂ ̂Rp̂ for some i = 1, . . . , r

and some q̂ ̂Rp̂ ∈ AssR̂̂p
(D(A)p̂/(x1, . . . , xi−1)D(A)p̂), q̂

̂Rp̂  ̂p ̂Rp̂.

Since q̂ ∈ AssR̂(D(A)/(x1, . . . , xi−1)D(A)), we have q̂ ∈ AttR̂(0 :A (x1, . . .,

xi−1) ̂R). It follows by Lemma 2.3 that q̂∩R ∈ AttR(0 :A (x1, . . . , xi−1)R). As

q̂  ̂p and x̄i ∈ q̂ ̂Rp̂ we have xi ∈ q̂∩R and dim(R/q̂∩R) > dim(R/̂p∩R) ≥ k.

This gives a contradiction. �

3. Main results

First of all we recall some auxiliary lemmas. The following result is well-
known.

Lemma 3.1. Let r = depth(I,M) and x1, . . . , xr be an M -regular sequence.

Then

AssR(Ext
r
R(R/I,M)) = AssR(H

r
I (M))

= AssR(M/(x1, . . . , xr)M) ∩ Var(I).
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Remark 3.2. Assume that r = depth(I,M). Since rad(I) = rad(In) = rad(an1
1
,

. . . , anl

l ), where (a1, . . . , al) is a system of generators of I, we have

AssR(Ext
r
R(R/In,M)) = AssR(H

r
In(M))

= AssR(H
r
I (M)) = AssR(Ext

r
R(R/I,M)).

AssR(Ext
r
R(R/(an1

1
, . . . , anl

l )n,M)) = AssR(H
r
I (M).

Moreover, by the proof of [7, Main Theorem], we have the following lemma.

Lemma 3.3. Let k ≥ 0 be an integer and r = Width>k(I, A). Then, for all

t ≤ r, we have

(i) (
t
⋃

i=0

AttR(Tor
R
i (R/In, A)))≥k ⊆ (

t
⋃

i=0

AttR(Tor
R
i (R/I,A)))≥k for all n ∈

N.

(ii) (
t
⋃

i=0

AttR(Tor
R
i (R/(an1

1
, . . . , anl

l ), A)))≥k ⊆ (
t
⋃

i=0

AttR(Tor
R
i (R/I,A)))≥k

for any system of generators (a1, . . . , al) of I and for all n1, . . . , nl ∈ N.

Now we present the main result of this paper.

Theorem 3.4. Let k ≥ 0 be an integer and r = Width>k(I, A). Then for all

t ≤ r we have

(

t
⋃

i=0

AttR(Tor
R
i (R/I,A)))≥k = (

t
⋃

i=0

AttR(Tor
R
i (R/In, A)))≥k

= (
t
⋃

i=0

AttR(Tor
R
i (R/(an1

1
, . . . , anl

l ), A)))≥k

for all n, n1, . . . , nl ∈ N and for any system of generators (a1, . . . , al) of I.

Proof. We first claim that

(

t
⋃

i=0

AttR(Tor
R
i (R/I,A)))≥k = (

t
⋃

i=0

AssR(D(A)/(x1, . . . , xi)D(A)))≥k ∩ Var(I)

for all t ≤ r, where (x1, . . . , xr) is an A-cosequence in dimension > k in I.

Let p ∈ (
t
⋃

i=0

AttR(Tor
R
i (R/I,A)))≥k. We take an integer i0 ≤ t such that

p ∈ AttR(Tor
R
i0(R/I,A)) and p 6∈ AttR(Tor

R
i (R/I,A))

for all i < i0.
Since p ∈ AttR(Tor

R
i0(R/I,A)), by Lemma 2.3 there exists

̂p ∈ AttR̂(Tor
R
i0(R/I,A))

such that ̂p ∩R = p. Hence AnnR̂(A) ⊆ ̂p and I ̂R ⊆ ̂p. Since dimR/(̂p ∩R) =
dimR/p ≥ k, we get by Lemma 2.5 that (x̄1, . . . , x̄i0 ) is a D(A)p̂-poor filter
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sequence. Since x1, . . . , xi0 ∈ I and I ̂R ⊆ ̂p, it follows that (x1, . . . , xi0) is a
D(A)p̂-filter sequence.

If p 6∈ AssR(D(A)/(x1, . . . , xi)D(A)) for all i < i0, then

̂p ̂Rp̂ 6∈ AssR̂̂p
(D(A)p̂/(x̄1, . . . , x̄i)D(A)p̂)

for all i < i0. It implies that (x̄1, . . . , x̄i0 ) is a D(A)p̂-regular sequence and we

have depth(I ̂Rp̂, D(A)p̂) ≥ i0.

On the other hand, since ̂p ∈ AttR̂(Tor
R
i0(R/I,A)), we can check that

̂p ∈ Var(AnnR̂ TorRi0(R/I,A))

= Var(AnnR̂(Ext
i0
R̂
( ̂R/I ̂R,D(A))))

= SuppR̂(Ext
i0
R̂
( ̂R/I ̂R,D(A)).

Hence, Exti0
R̂̂p

( ̂Rp̂/I
̂Rp̂, D(A)p̂) 6= 0. It follows that depth(I ̂Rp̂, D(A)p̂) ≤ i0.

So i0 = depth(I ̂Rp̂, D(A)p̂).

Since ̂p ∈ AttR̂(Tor
R
i0(R/I,A)), ̂p ∈ AssR̂(Ext

i0
R̂
( ̂R/I ̂R,D(A))). From this

and by Lemma 3.1 we have

̂p ̂Rp̂ ∈ AssR̂̂p
(Exti0

R̂̂p
( ̂Rp̂/I

̂Rp̂, D(A)p̂))

= AssR̂̂p
(D(A)p̂/(x̄1, . . . , x̄i0)D(A)p̂) ∩Var(I ̂Rp̂).

Hence, ̂p ∈ AssR̂(D(A)/(x1, . . . , xi0)D(A)) ∩ Var(I ̂R). It follows by Lemma

2.4 applying for the natural homomorphism R → ̂R, we get that

p ∈ AssR(D(A)/(x1, . . . , xi0 )D(A)) ∩Var(I).

Therefore we get the first inclusion

(

t
⋃

i=0

AttR(Tor
R
i (R/I,A)))≥k ⊆ (

t
⋃

i=0

AssR(D(A)/(x1, . . . , xi)D(A)))≥k ∩Var(I).

Conversely, for any p ∈ (
t
⋃

i=0

AssR D(A)/(x1, . . . , xi)D(A))≥k ∩Var(I), there

exists an integer i0 ≤ t such that

p ∈ AssR(D(A)/(x1, . . . , xi0)D(A))≥k ∩Var(I)

and

p 6∈ AssR(D(A)/(x1, . . . , xi)D(A))

for all i < i0. Hence, pRp 6∈ AssRp(D(A)p/(x1, . . . , xi)D(A)p) for all i < i0.

Therefore

AssRp(D(A)p/(x1, . . . , xi)D(A)p) = (AssRp(D(A)p/(x1, . . . , xi)D(A)p))≥1
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for all i < i0. It follows that

AssR̂̂p
(D(A)p̂/(x̄1, . . . , x̄i)D(A)p̂) = (AssR̂̂p

(D(A)p̂/(x̄1, . . . , x̄i)D(A)p̂)≥1.

Since x̄1, . . . , x̄i0 is an D(A)p̂-poor filter sequence by Lemma 2.5 with notice

that x1, . . . , xi0 ∈ I ̂R ⊆ ̂p, it follows that x̄1, . . . , x̄i0 is an D(A)p̂regular se-

quence. Because p ∈ AssR(D(A)/(x1, . . . , xi0)D(A)) ∩ Var(I), we get

̂p ̂Rp̂ ∈ AssR̂̂p
(D(A)p̂/(x̄1, . . . , x̄i0)D(A)p̂) ∩ Var(I ̂Rp̂).

From this we obtain

0 = depth(I ̂Rp̂, D(A)p̂/(x̄1, . . . , x̄i0 )D(A)p̂) = depth(I ̂Rp̂, D(A)p̂)− i0.

It implies that depth(I ̂Rp̂, D(A)p̂) = i0. By Lemma 3.1, we have the equality

AssR̂̂p
(D(A)p̂/(x̄1, . . . , x̄i0)D(A)p̂) ∩ Var(I ̂Rp̂)

= AssR̂̂p
(Exti0

R̂̂p
( ̂Rp̂/I

̂Rp̂, D(A)p̂)).

Therefore ̂p ̂Rp̂ ∈ AssR̂̂p
(Exti0

R̂̂p
( ̂Rp̂/I

̂Rp̂, D(A)p̂)). Hence

̂p ∈ AssR̂(Ext
i0
R̂
( ̂R/I ̂R,D(A))).

From this we have ̂p ∈ AttR̂(Tor
R
i0 (R/I,A)). Hence p ∈ AttR(Tor

R
i0(R/I,A))

and we get the inclusion

(
t
⋃

i=0

AssR(D(A)/(x1, . . . , xi)D(A)))≥k ∩Var(I) ⊆ (
t
⋃

i=0

AttR(Tor
R
i (R/I,A)))≥k.

Hence,

(

t
⋃

i=0

AssR(D(A)/(x1, . . . , xi)D(A)))≥k ∩Var(I) = (

t
⋃

i=0

AttR(Tor
R
i (R/I,A)))≥k.

The claim is proved.
Next, we prove the first equality of Theorem 3.4. Let

p ∈ (

t
⋃

i=0

AttR(Tor
R
i (R/I,A)))≥k.

We take an integer i0 ≤ t such that

p ∈ AttR(Tor
R
i0(R/I,A)) and p 6∈ AttR(Tor

R
i (R/I,A))

for all i < i0.
It follows by the claim that p 6∈ AssR(D(A)/(x1, . . . , xi)D(A)) for all i < i0,

where (x1, . . . , xr) is an A-cosequence in dimension > k in I. From this and
by similar arguments as in the proof of the claim, we get the fact that i0 =

depth(I ̂Rp̂, D(A)p̂).
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Since ̂p∈ AttR̂(Tor
R
i0(R/I,A)), we get ̂p∈ AssR̂(Ext

i0
R̂
( ̂R/I ̂R,D(A))). Hence,

̂p ̂Rp̂ ∈ AssR̂̂p
(Exti0

R̂̂p
( ̂Rp̂/I

̂Rp̂, D(A)p̂)).

It follows by Remark 3.2 that

̂p ̂Rp̂ ∈ AssR̂̂p
(Hi0

IR̂̂p
(D(A)p̂))

= AssR̂̂p
(Hi0

InR̂̂p
(D(A)p̂))

= AssR̂̂p
(Exti0

R̂̂p
( ̂Rp̂/I

n
̂Rp̂, D(A)p̂)).

Hence, ̂p ∈ AssR̂(Ext
i0
R̂
( ̂R/In ̂R,D(A))). So, ̂p ∈ AttR̂(Tor

R
i0(R/In, A)). By

Lemma 2.3, p ∈ AttR TorRi0(R/In, A). From this we obtain the inclusion

(

t
⋃

i=0

AttR(Tor
R
i (R/I,A)))≥k ⊆ (

t
⋃

i=0

AttR(Tor
R
i (R/In, A)))≥k.

Now by Lemma 3.3 we obtain the first equality

(

t
⋃

i=0

AttR(Tor
R
i (R/I,A)))≥k = (

t
⋃

i=0

AttR(Tor
R
i (R/In, A)))≥k.

Similarly, we have the second equality

(

t
⋃

i=0

AttR(Tor
R
i (R/I,A)))≥k = (

t
⋃

i=0

AttR(Tor
R
i (R/(an1

1
, . . . , anl

l ), A)))≥k.

The proof is completed. �

Remark 3.5. Theorem 3.4 may be stated as follows: Let k ≥ 0 be an integer
and r = Width>k(I, A). Then, for all t ≤ r, the followings are true.

(i) (
t
⋃

i=0

AttR(Tor
R
i (R/In, A)))≥k is independent of the choice of n.

(ii) (
t
⋃

i=0

AttR(Tor
R
i (R/(an1

1
, . . . , anl

l ), A)))≥k is independent of the choice

of n1, . . . , nl for any system of generators (a1, . . . , al) of I.

In the case k = 0, by Remark 3.5 we get the following result.

Corollary 3.6. Let r = Width>0(I, A). Then, for all t ≤ r, the followings are

true.

(i)
t
⋃

i=0

AttR(Tor
R
i (R/In, A)) is independent of the choice of n.

(ii)
t
⋃

i=0

AttR(Tor
R
i (R/(an1

1
, . . . , anl

l ), A)) is independent of the choice of

n1, . . . , nl for any system of generators (a1, . . . , al) of I.
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Now we consider the case k = −1. Firstly we recall a result of Nhan and
Dung in [7].

Lemma 3.7 ([7, Lemma 3.5]). Set Pt =
t−1
⋃

i=0

Var(AnnR(Tor
R
i (R/I,A))), where

t is a positive integer. Then

AttR(Tor
R
t (R/In, A)) ∪ Pt

=AttR(Tor
R
t (R/(an1

1
, . . . , anl

l ), A)) ∪ Pt

=AttR(Tor
R
t (R/I,A)) ∪ Pt

for any system of generators (a1, . . . , al) of I and all positive integer n, n1,

. . . , nl.

Proposition 3.8. Let r = Width(I, A). Then the followings are true.

(i) AttR(Tor
R
r (R/In, A)) is independent of the choice of n.

(ii) AttR(Tor
R
r (R/(an1

1
, . . . , anl

l ), A)) is independent of the choice of n1,

. . . , nl for any system of generators (a1, . . . , al) of I.

Proof. By [7, Theorem 2.8], we have TorRi (R/I,A) = 0 for all i < r. Hence

Pr =
r−1
⋃

i=0

Var(AnnR(Tor
R
i (R/I,A))) = ∅. It follows by Lemma 3.7 that

AttR(Tor
R
r (R/I,A)) = AttR(Tor

R
r (R/In, A))

= AttR(Tor
R
r (R/(an1

1
, . . . , anl

l ), A)).

The proof is completed. �
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