DOI QR코드

DOI QR Code

자연수 m의 일반화된 배수 판정법

Generalized Divisibility Rule of Natural Number m

  • 이상운 (강릉원주대학교 과학기술대학 멀티미디어공학과)
  • Lee, Sang-Un (Dept. of Multimedia Eng., Gangneung-Wonju National University)
  • 투고 : 2014.05.20
  • 심사 : 2014.10.10
  • 발행 : 2014.10.31

초록

n/m=qm+r에서 에서 m=7인 단순한 경우에도 주어진 수 n이 m의 배수 판정법은 간단하지가 않다. 만약, m이 두 자리 수 이상이 되면 더욱 복잡해진다. 일반적인 배수 판정법으로 둔켈스 (Dunkels)법이 있지만 n이 컴퓨터로 처리하지 못하는 매우 큰 자리수인 경우 이 방법도 처리할 수 없다. 본 논문은 n과 m의 자리수와 무관하게 n(modm)=0 여부로 n이 m의 배수인지 여부를 검증하는 간단하면서도 정확한 방법을 제안한다. 제안된 방법은 $n=n_1n_2n_3{\cdots}n_k$, $m=m_1m_2{\cdots}m_l$에 대해 $r_1=n_1n_2{\cdots}n_l(mod m)$으로 설정하고, $r_i=r_{i-1}{\times}10+n_i(mod m)$, $i=2,3,{\cdots},k-1+1$로 n의 자리수를 1자리씩 감소시키는 방법을 적용하였다. 제안된 방법을 다양한 n,m 데이터에 적용한 결과 쉽고, 빠르며 정확한 몫과 나머지 값을 구할 수 있음을 보였다.

For n/m=qm+r, there is no simple divisibility rule for simple m=7 such that is the n multiply by m? This problem can be more complex for two or more digits of m. The Dunkels method has been known for generalized divisibility test method, but this method can not compute very large digits number that can not processed by computer. This paper suggests simple and exact divisibility method for m completely irrelevant n and m of digits. The proposed method sets $r_1=n_1n_2{\cdots}n_l(mod m)$ for $n=n_1n_2n_3{\cdots}n_k$, $m=m_1m_2{\cdots}m_l$. Then this method computes $r_i=r_{i-1}{\times}10+n_i(mod m)$, $i=2,3,{\cdots}k-l+1$ and reduces the digits of n one-by-one. The proposed method can be get the quotient and remainder with easy, fast and correct for various n,m experimental data.

키워드

참고문헌

  1. B. S. Park, "Multiple Test for 7 - Can be Divided?," Mathematics Walk, Mathematics Standard educational institute, Nov. 2009.
  2. A. Dunkels, "Comments on Note 82.53-a Generalized Test for Divisibility," Mathematical Gazette, Vol. 84, p. 79-81, Mar. 2000. https://doi.org/10.2307/3621481
  3. Wikipedia, "Divisibility Rule," Wikipedia Foundation, 2013.
  4. M. Ahuja and J. Bruening, "A Survey of Divisibility Test with a Historical Perspective," Bulletin of the Malaysian Mathematical Society, Vol. 22, pp. 33-43, 1999.
  5. H. Feiner, "Divisibility Test for 7," The Mathematics Teacher, Vol. 58, pp. 311-312, Apr 1965.
  6. E. R. Matthews, "A Simple 7 Divisibility Rule," The Mathematics Teacher, Vol. 62, No. 6, pp. 461-464, Oct 1969.
  7. E. A. Maxwell, "Division by 7 or 13," Mathematical Gazette, Vol. 49, p. 84, Feb 1965. https://doi.org/10.2307/3614254
  8. L. E. Marin, "Why is There No Easy Divisibility Rule for 7?," Jansal Mathematics, Mar 2010.
  9. M. B. Choi and S. U. Lee, "The $\kappa$ Fermat's Integer Factorization Algorithm," Journal of the Institute of Internet, Broadcasting and Communication, Vol. 11, No. 4, pp. 157-164, Aug. 2011.
  10. S. U. Lee and M. B. Choi, "The Integer Factorization Method Based on Congruence of Squares," Journal of the Institute of Internet, Broadcasting and Communication, Vol. 12, No. 5, pp. 185-189, Oct. 2012. https://doi.org/10.7236/JIWIT.2012.12.5.185
  11. S. U. Lee and M. B. Choi, "Integer Factorization for Decryption," Journal of the Institute of Internet, Broadcasting and Communication, Vol. 13, No. 6, pp. 221-228, Dec. 2013. https://doi.org/10.7236/JIIBC.2013.13.6.221