• 제목/요약/키워드: N-lR

검색결과 1,983건 처리시간 0.032초

The Line n-sigraph of a Symmetric n-sigraph-V

  • Reddy, P. Siva Kota;Nagaraja, K.M.;Geetha, M.C.
    • Kyungpook Mathematical Journal
    • /
    • 제54권1호
    • /
    • pp.95-101
    • /
    • 2014
  • An n-tuple ($a_1,a_2,{\ldots},a_n$) is symmetric, if $a_k$ = $a_{n-k+1}$, $1{\leq}k{\leq}n$. Let $H_n$ = {$(a_1,a_2,{\ldots},a_n)$ ; $a_k$ ${\in}$ {+,-}, $a_k$ = $a_{n-k+1}$, $1{\leq}k{\leq}n$} be the set of all symmetric n-tuples. A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_n$ = (G,${\sigma}$) ($S_n$ = (G,${\mu}$)), where G = (V,E) is a graph called the underlying graph of $S_n$ and ${\sigma}$:E ${\rightarrow}H_n({\mu}:V{\rightarrow}H_n)$ is a function. The restricted super line graph of index r of a graph G, denoted by $\mathcal{R}\mathcal{L}_r$(G). The vertices of $\mathcal{R}\mathcal{L}_r$(G) are the r-subsets of E(G) and two vertices P = ${p_1,p_2,{\ldots},p_r}$ and Q = ${q_1,q_2,{\ldots},q_r}$ are adjacent if there exists exactly one pair of edges, say $p_i$ and $q_j$, where $1{\leq}i$, $j{\leq}r$, that are adjacent edges in G. Analogously, one can define the restricted super line symmetric n-sigraph of index r of a symmetric n-sigraph $S_n$ = (G,${\sigma}$) as a symmetric n-sigraph $\mathcal{R}\mathcal{L}_r$($S_n$) = ($\mathcal{R}\mathcal{L}_r(G)$, ${\sigma}$'), where $\mathcal{R}\mathcal{L}_r(G)$ is the underlying graph of $\mathcal{R}\mathcal{L}_r(S_n)$, where for any edge PQ in $\mathcal{R}\mathcal{L}_r(S_n)$, ${\sigma}^{\prime}(PQ)$=${\sigma}(P){\sigma}(Q)$. It is shown that for any symmetric n-sigraph $S_n$, its $\mathcal{R}\mathcal{L}_r(S_n)$ is i-balanced and we offer a structural characterization of super line symmetric n-sigraphs of index r. Further, we characterize symmetric n-sigraphs $S_n$ for which $\mathcal{R}\mathcal{L}_r(S_n)$~$\mathcal{L}_r(S_n)$ and $$\mathcal{R}\mathcal{L}_r(S_n){\sim_=}\mathcal{L}_r(S_n)$$, where ~ and $$\sim_=$$ denotes switching equivalence and isomorphism and $\mathcal{R}\mathcal{L}_r(S_n)$ and $\mathcal{L}_r(S_n)$ are denotes the restricted super line symmetric n-sigraph of index r and super line symmetric n-sigraph of index r of $S_n$ respectively.

ON SOME ROOT BEHAVIORS OF CERTAIN SUMS OF POLYNOMIALS

  • Chong, Han-Kyol;Kim, Seon-Hong
    • 대한수학회보
    • /
    • 제53권1호
    • /
    • pp.21-28
    • /
    • 2016
  • It is known that no two of the roots of the polynomial equation (1) $$\prod\limits_{l=1}^{n}(x-r_l)+\prod\limits_{l=1}^{n}(x+r_l)=0$$, where 0 < $r_1{\leq}r_2{\leq}{\cdots}{\leq}r_n$, can be equal and all of its roots lie on the imaginary axis. In this paper we show that for 0 < h < $r_k$, the roots of $$(x-r_k+h)\prod\limits_{{l=1}\\{l{\neq}k}}^{n}(x-r_l)+(x+r_k-h)\prod\limits_{{l=1}\\{l{\neq}k}}^{n}(x+r_l)=0$$ and the roots of (1) in the upper half-plane lie alternatively on the imaginary axis.

TOPOLOGIES AND INCIDENCE STRUCTURE ON Rn-GEOMETRIES

  • Im, Jang-Hwan
    • 대한수학회지
    • /
    • 제39권1호
    • /
    • pp.31-49
    • /
    • 2002
  • An R$^{n}$ -geometry (P$^{n}$ , L) is a generalization of the Euclidean geometry on R$^{n}$ (see Def. 1.1). We can consider some topologies (see Def. 2.2) on the line set L such that the join operation V : P$^{n}$ $\times$ P$^{n}$ \ $\Delta$ longrightarrow L is continuous. It is a notable fact that in the case n = 2 the introduced topologies on L are same and the join operation V : P$^2$ $\times$ P$^2$ \ $\Delta$ longrightarrow L is continuous and open [10, 11]. It is a fundamental topological property of plane geometry, but in the cases n $\geq$ 3, it is no longer true. There are counter examples [2]. Hence, it is a fundamental problem to find suitable topologies on the line set L in an R$^{n}$ -geometry (P$^{n}$ , L) such that these topologies are compatible with the incidence structure of (P$^{n}$ , L). Therefore, we need to study the topologies of the line set L in an R$^{n}$ -geometry (P$^{n}$ , L). In this paper, the relations of such topologies on the line set L are studied.

ON SOME L1-FINITE TYPE (HYPER)SURFACES IN ℝn+1

  • Kashani, Seyed Mohammad Bagher
    • 대한수학회보
    • /
    • 제46권1호
    • /
    • pp.35-43
    • /
    • 2009
  • We say that an isometric immersed hypersurface x : $M^n\;{\rightarrow}\;{\mathbb{R}}^{n+1}$ is of $L_k$-finite type ($L_k$-f.t.) if $x\;=\;{\sum}^p_{i=0}x_i$ for some positive integer p < $\infty$, $x_i$ : $M{\rightarrow}{\mathbb{R}}^{n+1}$ is smooth and $L_kx_i={\lambda}_ix_i$, ${\lambda}_i\;{\in}\;{\mathbb{R}}$, $0{\leq}i{\leq}p$, $L_kf=trP_k\;{\circ}\;{\nabla}^2f$ for $f\;{\in}\'C^{\infty}(M)$, where $P_k$ is the kth Newton transformation, ${\nabla}^2f$ is the Hessian of f, $L_kx\;=\;(L_kx^1,\;{\ldots},\;L_kx^{n+1})$, $x=(x^1,\;{\ldots},\;x^{n+1})$. In this article we study the following(hyper)surfaces in ${\mathbb{R}}^{n+1}$ from the view point of $L_1$-finiteness type: totally umbilic ones, generalized cylinders $S^m(r){\times}{\mathbb{R}}^{n-m}$, ruled surfaces in ${\mathbb{R}}^{n+1}$ and some revolution surfaces in ${\mathbb{R}}^3$.

CHARACTERIZATION OF FUNCTIONS VIA COMMUTATORS OF BILINEAR FRACTIONAL INTEGRALS ON MORREY SPACES

  • Mao, Suzhen;Wu, Huoxiong
    • 대한수학회보
    • /
    • 제53권4호
    • /
    • pp.1071-1085
    • /
    • 2016
  • For $b{\in}L^1_{loc}({\mathbb{R}}^n)$, let ${\mathcal{I}}_{\alpha}$ be the bilinear fractional integral operator, and $[b,{\mathcal{I}}_{\alpha}]_i$ be the commutator of ${\mathcal{I}}_{\alpha}$ with pointwise multiplication b (i = 1, 2). This paper shows that if the commutator $[b,{\mathcal{I}}_{\alpha}]_i$ for i = 1 or 2 is bounded from the product Morrey spaces $L^{p_1,{\lambda}_1}({\mathbb{R}}^n){\times}L^{p_2,{\lambda}_2}({\mathbb{R}}^n)$ to the Morrey space $L^{q,{\lambda}}({\mathbb{R}}^n)$ for some suitable indexes ${\lambda}$, ${\lambda}_1$, ${\lambda}_2$ and $p_1$, $p_2$, q, then $b{\in}BMO({\mathbb{R}}^n)$, as well as that the compactness of $[b,{\mathcal{I}}_{\alpha}]_i$ for i = 1 or 2 from $L^{p_1,{\lambda}_1}({\mathbb{R}}^n){\times}L^{p_2,{\lambda}_2}({\mathbb{R}}^n)$ to $L^{q,{\lambda}}({\mathbb{R}}^n)$ implies that $b{\in}CMO({\mathbb{R}}^n)$ (the closure in $BMO({\mathbb{R}}^n)$of the space of $C^{\infty}({\mathbb{R}}^n)$ functions with compact support). These results together with some previous ones give a new characterization of $BMO({\mathbb{R}}^n)$ functions or $CMO({\mathbb{R}}^n)$ functions in essential ways.

CERTAIN MAXIMAL OPERATOR AND ITS WEAK TYPE $L^1$($R^n$)-ESTIMATE

  • Kim, Yong-Cheol
    • 대한수학회논문집
    • /
    • 제16권4호
    • /
    • pp.621-626
    • /
    • 2001
  • Let { $A_{>o}$ t= exp(M log t)} $_{t}$ be a dilation group where M is a real n$\times$n matrix whose eigenvalues has strictly positive real part, and let $\rho$be an $A_{t}$ -homogeneous distance function defined on ( $R^{n}$ ). Suppose that K is a function defined on ( $R^{n}$ ) such that /K(x)/$\leq$ (No Abstract.see full/text) for a decreasing function defined on (t) on R+ satisfying where wo(x)=│log│log (x)ll. For f$\in$ $L_{1}$ ( $R^{n}$ ), define f(x)=sup t>0 Kt*f(x)=t-v K(Al/tx) and v is the trace of M. Then we show that \ulcorner is a bounded operator of $L_{-{1}( $R^{n}$ ) into $L^1$,$\infty$( $R^{n}$).

  • PDF

ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS TO SEMILINEAR ELLIPTIC EQUATIONS IN ℝn

  • Lai, Baishun;Luo, Qing;Zhou, Shuqing
    • 대한수학회지
    • /
    • 제48권2호
    • /
    • pp.431-447
    • /
    • 2011
  • We investigate the asymptotic behavior of positive solutions to the elliptic equation (0.1) ${\Delta}u+|x|^{l_1}u^p+|x|^{l_2}u^q=0$ in $\mathbb{R}^n$. We obtain a conclusion that, for n $\geq$ 3, -2 < $l_2$ < $l_1$ $\leq$ 0 and q > p > 1, any positive radial solution to (0.1) has the following properties: $lim_{r{\rightarrow}{\infty}}r^{\frac{2+l_1}{p-1}}\;u$ and $lim_{r{\rightarrow}0}r^{\frac{2+l_2}{q-1}}\;u$ always exist if $\frac{n+1_1}{n-2}$ < p < q, $p\;{\neq}\;\frac{n+2+2l_1}{n-2}$, $q\;{\neq}\;\frac{n+2+2l_2}{n-2}$. In addition, we prove that the singular positive solution of (0.1) is unique under some conditions.

중층트롤의 깊이바꿈과 소해심도의 안정성 (Depth Control and Sweeping Depth Stability of the Midwater Trawl)

  • 장지원
    • 수산해양기술연구
    • /
    • 제9권1호
    • /
    • pp.1-18
    • /
    • 1973
  • 중층트를 어구(漁具)의 소해심도(掃海深度)를 일정(一定)한 적정어획속도(適正漁獲速度)에서 기동성(機動性)있게 변화(變化)시키기 위하여 기초적인 모형어구(模型漁具)의 수조실험(水槽實驗)과 특별(特別)히 고안한 깊이바꿈틀을 이용(利用)한 이차(二次)에 걸친 해상시험(海上試驗)을 통(通)하여 연구한 결과를 요약(要約)하면 다음과 같다. 1. 중층(中層)트롤의 그물어구의 깊이 y는 끌줄의 길이 L과 단위(單位) 길이의 끌줄, 깊이바꿈틀 및 그물의 각(各) 수중중량(水中重量) $W_r,\;W_o,\;W_n$과 각(各) 항력(抗力) $R_r,\;R_o,\;R_n$ 사이의 관계(關係)는 차원해석법(次元解析法)에 의하면 다음과 같다. $$y=kLf(\frac{W_r}{R_r},\;\frac{W_o}{R_o},\;\frac{W_n}{R_n})$$ 단(但), k는 상수(常數)이고 f는 함수이다. 2. 단위 길이당(當)의 수중중량(水中重量) $W_r$, 길이 L인 끌줄 끝에 항력(抗力) $D_n$, 수중중량(水中重量) $W_n$d인 수중저항분를 매달고 끌줄의 다른 한 끝을 수면(水面)에서 예인(曳引)할 때,. 끌줄의 형상(形狀)을 현수곡선이라고 보면, 수중저항분의 깊이 y는 다음과 같다. $$y=\frac{1}{W_r}\{\sqrt{{D_n^2}+{(W_n+W_rL)^2}}-\sqrt{{D_n^2+W_n}^2\}$$ 3. 중층(中層)트롤의 그물어구(漁具)깊이의 변화(變化) ${\Delta}y$는 예강(曳綱)의 길이 L을 바꾸거나 추(錘) ${\Delta}W_n$를 부가(附加)하면 다음과 같다. $${\Delta}y{\approx}\frac{W_n+W_{r}L}{\sqrt{D_n^2+(W_n+W_{r}L)^2}}{\Delta}L$$ $${\Delta}y{\approx}\frac{1}{W_r}\{\frac{W_n+W_rL}{\sqrt{D_n^2+(W_n+W_{r}L)^2}}-{\frac{W_n}{\sqrt{D_n^2+W_n^2}}\}{\Delta}W_n$$ 단(但), $D_n$은 그물어구의 항력(抗力)이다. 4. 끌줄 상(上)의 중간점(中間点)에 추(錘) $W_s$를 부가(附加)할 때 중층(中層)트롤 그물어구의 깊이바꿈 ${\Delta}y$$${\Delta}y=\frac{1}{W_r}\{(T_{ur}'-T_{ur})-T_u'-T_u)\}$$ 단(但) $$T_{ur}^l=\sqrt{T_u^2+(W_s+W_{r}L)^2+2T_u(W_s+W_{r}L)sin{\theta}_u$$ $$T_{ur}=\sqrt{T_u^2+(W_{r}L)^2+2T_uW_{r}L\;sin{\theta}_u$$ $$T_{u}'=\sqrt{T_u^2+W_s^2+2T_uW_{s}\;sin{\theta}_u$$ $T_u$ 추(錘)를 부가(附加)하지 않았을 때 끌줄 상(上)의 중간점(中間点)에 있어서의 예인어선(曳引漁船) 쪽을 향하는 장력(張力)이고, ${\theta}_u$는 장력(張力) $T_u$와 수평방향(水平方向)과 이루는 각도(角度)이다. 5. 어떠한 형태(形態)의 저예강용(底曳綱用) 전개판(展開板)도 성능(性能)에 있서어 차이는 있으나 전중량(全重量)을 가볍게 하고 저변(底邊)에 무게를 달아 안정(安定)시키면 중층예강용(中層曳綱用)으로 사용(使用)할 수 있다는 것이 모형(模型) 실험(實驗)결과 밝혀졌다. 6. 모형(模型) 그물(Fig.6)의 수조실험(水槽實驗)에서는 예강속도(曳綱速度) v m/sec, 강고(綱高) H cm 및 수유저항(水流抵抗) R kg 사이에는 다음과 같은 간단(簡單)한 관계식(關係式)이 성립(成立)한다. $$H=8+\frac{10}{0.4+v}$$$R=3+9v^2$$ 7. 특별(特別)히 고안한 십자(十字)날개형(型) 깊이바꿈틀과 H날개형(型) 깊이 바꿈틀을 비교(比較)한 결과(結果) 전자(前者)보다 안정성(安定性)이 우월하였다. 8. 그물어구(漁具)의 유수저항(流水抵抗)이 매우 크며 또 거의가 항력(抗力)으로 볼 수 있으므로 깊이바꿈틀의 종류에 관계없이 그물어구의 소해심도(掃海深度)는 대단히 안정(安定)된 상태를 유지하였다. 9. H날개형(型) 깊이바꿈틀의 수평(水平)날개 면적율 $1.2{\times}2.4m^2$로 하였을 때 유수저항(流水抵抗) 2 ton의 그물 어구를 2.3kts로 예인(曳引)하면서 영각(迎角)을 $0^{\circ}{\sim}30^{\circ}$로 변화(變化)시킨 결과(結果), 끌줄의 길이에 관계없이 약(約) 20m의 깊이바꿈을 얻을 수 있었다.

  • PDF

STABILITY THEOREM FOR THE FEYNMAN INTEGRAL APPLIED TO MULTIPLE INTEGTALS

  • Kim, Bong-Jin
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제8권1호
    • /
    • pp.71-78
    • /
    • 2001
  • In 1984, Johnson[A bounded convergence theorem for the Feynman in-tegral, J, Math. Phys, 25(1984), 1323-1326] proved a bounded convergence theorem for hte Feynman integral. This is the first stability theorem of the Feynman integral as an $L(L_2 (\mathbb{R}^N), L_2(\mathbb{R}^{N}))$ theory. Johnson and Lapidus [Generalized Dyson series, generalized Feynman digrams, the Feynman integral and Feynmans operational calculus. Mem, Amer, Math, Soc. 62(1986), no 351] studied stability theorems for the Feynman integral as an $L(L_2 (\mathbb{R}^N), L_2(\mathbb{R}^{N}))$ theory for the functional with arbitrary Borel measure. These papers treat functionals which involve only a single integral. In this paper, we obtain the stability theorems for the Feynman integral as an $L(L_1 (\mathbb{R}^N), L_{\infty}(\mathbb{R}^{N}))$theory for the functionals which involve double integral with some Borel measures.

  • PDF

WEAKTYPE $L^1(R^n)$-ESTIMATE FOR CRETAIN MAXIMAL OPERATORS

  • Kim, Yong-Cheol
    • 대한수학회지
    • /
    • 제34권4호
    • /
    • pp.1029-1036
    • /
    • 1997
  • Let ${A_t)}_{t>0}$ be a dilation group given by $A_t = exp(-P log t)$, where P is a real $n \times n$ matrix whose eigenvalues has strictly positive real part. Let $\nu$ be the trace of P and $P^*$ denote the adjoint of pp. Suppose that $K$ is a function defined on $R^n$ such that $$\mid$K(x)$\mid$ \leq k($\mid$x$\mid$_Q)$ for a bounded and decreasing function $k(t) on R_+$ satisfying $k \diamond $\mid$\cdot$\mid$_Q \in \cup_{\varepsilon >0}L^1((1 + $\mid$x$\mid$)^\varepsilon dx)$ where $Q = \int_{0}^{\infty} exp(-tP^*) exp(-tP)$ dt and the norm $$\mid$\cdot$\mid$_Q$ stands for $$\mid$x$\mid$_Q = \sqrt{}, x \in R^n$. For $f \in L^1(R^n)$, define $mf(x) = sup_{t>0}$\mid$K_t * f(x)$\mid$$ where $K_t(X) = t^{-\nu}K(A_{1/t}^* x)$. Then we show that $m$ is a bounded operator of $L^1(R^n) into L^{1, \infty}(R^n)$.

  • PDF