Browse > Article
http://dx.doi.org/10.4134/JKMS.2002.39.1.031

TOPOLOGIES AND INCIDENCE STRUCTURE ON Rn-GEOMETRIES  

Im, Jang-Hwan (Graduate School of Advanced Imaging Science Multimedia and Film Chung-Ang University)
Publication Information
Journal of the Korean Mathematical Society / v.39, no.1, 2002 , pp. 31-49 More about this Journal
Abstract
An R$^{n}$ -geometry (P$^{n}$ , L) is a generalization of the Euclidean geometry on R$^{n}$ (see Def. 1.1). We can consider some topologies (see Def. 2.2) on the line set L such that the join operation V : P$^{n}$ $\times$ P$^{n}$ \ $\Delta$ longrightarrow L is continuous. It is a notable fact that in the case n = 2 the introduced topologies on L are same and the join operation V : P$^2$ $\times$ P$^2$ \ $\Delta$ longrightarrow L is continuous and open [10, 11]. It is a fundamental topological property of plane geometry, but in the cases n $\geq$ 3, it is no longer true. There are counter examples [2]. Hence, it is a fundamental problem to find suitable topologies on the line set L in an R$^{n}$ -geometry (P$^{n}$ , L) such that these topologies are compatible with the incidence structure of (P$^{n}$ , L). Therefore, we need to study the topologies of the line set L in an R$^{n}$ -geometry (P$^{n}$ , L). In this paper, the relations of such topologies on the line set L are studied.
Keywords
topological geometry; R$^{n}$ -geometry; continuous and open maps;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 D. Betten, Einige Klassen topologischer 3-Riiume, Resultate der Math. 12 (1987), 37-61   DOI
2 D. Betten and C. Horstmann, Einbettung von topologischen Raumgeometrien auf $R^{3}$ in den reellen affinen Raum, Resultate der Math. 6 (1983), 27-35   DOI
3 H. Busemann, The geometry of geodesics, Academic press, New York, 1965
4 J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1966
5 R. Engelking, General Topology, Heldermann, Verlag Berlin, 1989
6 J. Kisyriski, Convergence du Type L, Colloq. Math. 7 (1960), 205-211   DOI
7 H. Klein, Models of topological space geometries, J. Geom. 59 (1997), 77-93   DOI
8 J. R. Munkres, Topology: a first course, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1975
9 H. Salzmann, D. Betten, T. Grundhofer, H. Hahl, R. Lowen, and M. Stroppel, Compact Projective Planes, De Gruyter, Berin, New York, 1995
10 D. Simon, Topologische Geometrien auf dem $R^{3}$, Diplomarbeit, Univ. Kiel, 1985
11 H. Salzmann, Topological Planes, Adv. Math. 2 (1967), 1-160   DOI
12 D. Betten, Topologische Geometrien auf 3-Mannigfaltigkeiten, Simon Stevin 55 (1981), 221-235