• Title/Summary/Keyword: Multivariable feedback

Search Result 62, Processing Time 0.022 seconds

The Design of a Robust Linear Time-invariant Feedback Compensator Guaranteeing Uniform Ultimate Boundedness for Uncertain Multivariable Systems (Uniform ultimate boundedness를 보장하는 선형 시블변 되먹임 보상기 설계)

  • Choi, Han-Ho;Yoo, Dong-Sang;Chung, Myung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.678-681
    • /
    • 1991
  • In this paper, we propose a robust linear time-invariant feedback compensator design methodology for multivariable system which have both matched and mismatched uncertainties. In order to attack the problem of designing robust compensators guaranteeing uniform ultimate boundedness of every closed-loop system response within an arbitrarily small ball centered at the zero state based solely on the knowledge of the upper norm-bounds of uncertainties, we use an approach based upon the comparison theorem which is an effective approach in studying augmented feedback control systems with both mismatched and matched uncertainties. Through the approach, we draw some sufficient conditions for robust stability, and we give a simple example.

  • PDF

An LMI Approach to Output Feedback Sliding Mode Controller Design (출력 궤환 슬라이딩 모드 제어기 설계를 위한 선형행렬부등식 접근법)

  • Choi, Han-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1298-1301
    • /
    • 2007
  • The problem of designing dynamic output feedback sliding mode controllers for uncertain multivariable linear systems is considered. Using linear matrix inequalities(LMIs), a feasibility condition for the design problem is derived. Explicit fomulas of the gain matrices of a full order output feedback sliding mode controller in terms of the solution matrices of the LMI condition is given. A simple LMI-based algorithm for designing output feedback sliding mode controllers is also given. Finally, numerical design examples are given to show the effectiveness of the proposed method.

POLE-PLACEMENT WITHIN SPECIFIES REGIONS USING LO-DESIGN

  • Loh, N.K.;Ma, X.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.907-912
    • /
    • 1989
  • A new procedure is presented for optimally placing closed-loop poles of multivariable continuous-time systems in specified regions via linear-quadratic(LQ) state-feedback design. This method has the advantages of pole-placement and LQ-design. In addition, it provides minimum feedback gains in the control law.

  • PDF

A Design on Robust Two-Degree-of-Freedom Multivariable Boiler-Turbine System (강인한 2자유도 다변수 보일러-터빈 시스템의 설계)

  • Hwang, C.S.;Kim, D.W.;Jung, H.S.;Lee, D.Y.;Cho, K.Y.;Nam, K.W.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.670-672
    • /
    • 1995
  • This paper deals with the robust two-degree-of-freedom multivariable control system using $H_{2}/H{\infty}$optimization method which can achieve the robust stability and the robust performance, simultaneously. The feedback controller can obtain the robust stability property. The feedforward controller can obtain the robust performance property under modelling error. The robust two-degree-of-freedom multivariable control system is applied to the nonlinear multivariable boiler-turbine system. The validity of the proposed method is verified though being compared with LQG/LTR design method.

  • PDF

A multivariable controller design of 6 DOF motion simulator (6자유도 운동재현기의 다변수 제어기 설계)

  • 이호영;강지윤;이교일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.449-454
    • /
    • 1994
  • The Stewart Platform is one example of a motion simulator which generater 6DOF motion in space by six actuators in parallel. The presented control methrol of 6DOF motion simulator is generally classified into two types, one is SISO and the other is MIMO control type. The SISO control can't compensate for external load variation and different dynamic behavior of 6DOF motion, trerefore this type don's control motion precisely. On the other hand, the MIMO control compensates for a interference of 6DOF motion because MIMO controller is designed with 6DOF motion simulator synamics. But MIMO control of motion simulator has a complexity of 6DOF displacement feedback, because in oder to obtain feedback value we must solve the forward kinematics using measurement of cylinder length or design a state estimator, unless measurement of 6DOF displacement is possible. In this paper, a multivariable controller using H .inf. optimal control theory is designed to consider a interference of 6DOF motion and to obtain robust,precise control of system. Also in order to solve the mentioned problem of MIMO control, this paper presents a modified MIMO control model which control 6DOF motion by using feedback of measurement od cylinder length.

  • PDF

Input-Output Decoupling Control of Multivariable System with Robustness against Feedback Loop Failure (궤환회로 고장에 대해 강인성을 갖는 다변수 시스템의 비간섭 제어)

  • 김동화
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.8
    • /
    • pp.805-815
    • /
    • 1992
  • In this paper, robust decoupling control scheme of miftivarlable systems Is studied. Design methods for Input-Output decoupling systems with robustness against signal failure In arbitrary feedback loop or actuator loop Is suggested based on the Riccati type matrix equation and state feedback, and is simulated In Turbo-Generator systems with B-Input, 2 output. The results of simulation represents the decoupled and stable response against the failure of signal In sensor or actuator loop. However, the system designed by conventional ,it ate feedback shows the unstable response. This method Is applied for robust decoupling control of the complicated multivariable systems.

  • PDF

Optimal Constant PIDM Feedback Controller using Time Weighted Performance Index for Linear Multivariable Systems (선형 다변수 시스템에 있어서 시간비중 성능지수를 이용한 최적 상수 PIDM 궤한 제어기)

  • 권봉환;윤명중
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.5
    • /
    • pp.360-366
    • /
    • 1987
  • The design problem of optimal constant PIDM (proportional-integral-derivative and measurable variable) feedback controller for linear time-invariannt systems is investigated with the time-weighted quadratic performance index. Necessary conditions for an optimality of the controller are derived and an algorithm for computing the optimal feedback gain is presented. It is shown via example that the design mithod using the time-weighted quadratic performance index improves the transient responses of the closed-loop system.

  • PDF

State feedback controller design for linear multivariable systems with delays (다변수 시간지연 시스템의 상태궤환 제어기 설계)

  • 홍석민;황승구;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.1040-1044
    • /
    • 1992
  • This paper presents an algebraic approach for finding a dynamic state feedback controller when the linear multi-input system with delays in both state and input is controllable. In the time-delay case, controllability of the system does not always imply that system is cyclizable. Therefore, reduced order augmentation systems which is cyclizable as the time-varying case are considered. It is possible to construct feedback contorl systems by using single-input methods.

  • PDF

Output feedback semiglobal stabilization for a nonlinear system (광범위한 안정 영역을 갖는 출력만을 이용한 제어기 설계)

  • 오성록
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.9
    • /
    • pp.60-66
    • /
    • 1997
  • WE consider the stabilization of a class of multivariable nonlinear system using variable structure output feedback control. A high-gain observer is used to estimate state variable while rejecting the effect of the disturbances. We design a globally bounded output feedback variable structure controller that semi-globally stabilize the closed-loop system, while state variables do not exhibit a peaking.

  • PDF