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(Output Feedback Semiglobal Stabilization for
A Nonlinear System)
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Abstract

We consider the stabilization of a class of multivariable nonlinear system using variable structure
output feedback control. A high-gain observer is used to estimate state variable while rejecting the
effect of the disturbances. We design a globally bounded output feedback variable structure controller
that semi-globally stabilize the closed-loop system, while state variables do not exhibit a peaking.
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1. Introduction

Variable
successfully used to achieve control tasks such as

structure control(VSC) has been
stabilization or tracking due to the robustness to
modeling uncertainty and external disturbance for
linear systems or nonlinear systems. Most of
work on VSC assumes that measurement of state
variable is available to feedback controller ''’.
There have been some efforts to develope output
feedback VSC. Two different schemes have been
studied on output feedback VSC. One of them is
the static output feedback VSC ts]

not use an observer to estimate the state variable

which does

of the system. However, this scheme restricts the
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system to be relative degree one. The other one is

observer-based controller that can be used for

relative degree higher than one systems. Papers !

) ysed high—gain observers to reject disturbance

due to modeling uncertainty and imperfect
feedback cancellation of nonlinearity. However,
the use of high-gain observer for relative degree
higher than one systems results in peaking in the
shrinking of region of
attraction '*!. The paper [8], motivated by [3],
showed that a globally bounded VSC with

high-gain observer can stabilize a class of

state variables and

nonlinear system with no peaking. The paper
obtained a regional result, ie., an estimate of
region of attraction is a some limited compact set
which depend on controller. In fact, the region of
attraction in the paper can be estimated after the
design of controller. In this paper we generalize

8]

the paper in two direction. First, we develop

a controller design scheme that can achieve
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semiglobal output feedback stabilization, namely,
a region of attraction of the closed-loop system
could be any given compact set. The difference
stabilization and global
[ 9, page 4831 .
A good example in which a controller can achieve

between semiglobal

stabilization is well described in

the semiglobal stabilization but not the global
stabilization can be found in the same book.
Second, we use a less conservative assumption on
the uncertainty of input coefficient matrix. We
consider a feedback linearizable nonlinear system
whose initial condition belongs to any given
compact set. A robust-high gain observer is
constructed to estimate the state variable. The
use of the high-gain observer and globally
bounded control enable to show that the state
estimation error decays to arbitrarily small values
during a short transient period. A globally
bounded VSC is designed such that region of
attraction of the closed-loop system contains the
given compact set as well as a reaching condition
state estimation error
After the

trajectories reaching the sliding surface, stability

is satisfied when the

becomes arbitrarily small value.

of closed-loop system is established using a
standard Lyapunov argument.

II. Problem Statement

We consider the multivariable nonlinear system

(1)
(2)

w=Ffw)+ 2 g (wa,

y=h{w)

where we R"™ is the state, x=R™ is the control
input, yeR™ is the measured output. We assume
that f,
globally definded function, and £(0) = 0, h(0) = 0.
We make a following assumption on the system

(1)-(2).

g, and h are sufficiently smooth and

Assumption 1 For all we R”,
e The system (1)-(2) has a uniform vector
relative Le.,

all

degree 7 omby

for

{7y,

L, hilw==1L ,L /"'2-:0

(953)
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1<i,j<m, and the matrix
A ={ a;(wy={L L,/ " hw) is
nonsingular. )

® p=y T+t T,

o The mapping x=T(w), defined by
xi=Li Y hw  for 1<j<r, 1<ism and
x=[a g, xea Te x ' is a proper

im | 7))l = oo 1100,

Hall seo

map, lLe.,

The first two(2) of the assumptions used are a
necessary and sufficient condition for the mapping
x = T (w) to be a local diffeomorphism in the
X6

I The change of
variables x = T (w) transforms the system (1)-(2)

neighborhood of every we R

into the normal form

x=Ax+ Bl F(x) + G(x)u] (3)

y= Cx (4)
where A=block diagl A,,-, A,], B=block diag
[ By, B,], C=block diagl C,,--, C,l, the
matrices ( A,, B;) are Brunowsky controllable
canonical form, and C;=[1,0,-+,0],~,. The

properness of the mapping x = T (w) ensures that

| 10

it 1s a global diffeormorphism, c.f,, I Therefore,

the normal form is defined for all x= R”.

Remark 1 7o ensure the global diffeomorphism,
some vector field should be complete in [8,
proposition 9.1.1]. However, it is not easy to
check a vector field is complete in general,
mearwhile, a properness of the mapping can be
easily checked, since we have a explicit form of
local transformation.

Let
of F (x) and G(x), respectively. Suppose that
Fo(x) G (x) are
F (0)=0, G, (x)

xe R*. We also assume that

F,(x) and G,(x) be known nominal models

and sufficiently  smooth;

and is nonsingular for all

F,(x) and G,(x)
are globally bounded. This can be always
achieved by the

functions outside a bounded domain of interest, as

saturating given nominal

it will be illustrated later on. The uncertainty in
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equation (3) satisfies the matching condition,

which is a typical assumption in the design of

robust variable structure control ' 7. We make

the following assumption on the uncertainty.

Assumption 2

® For every compact set Us R", and VxsU,
there is a scalarnonnegative locally Lipschitz
function o(x) such that

| Fi()-F A< 00 (5)
where F'(x) and Fix) are the ith
components of vectors F(x) and F,(x),
respectively.

The matrix [I-N ] is an M-matrix. where N
is an mxm matrix such that each component of
N Is an upper bound on the absolute value of
the corresponding component of the matrix
(GG (0-1], Vx=l.

The definition of an M-matrix can be found in
[7]. Notice that since G(x) and G,'(x) are
bounded, the matrix N is well defined. Note that
0 {x) and matrix N could depend on the set U.

Remark 2

A typical assumption of uncertainty on the
[1I- G(x) G ; (0]l =<1,
It can be shown that the second

input coefficient matrix is
s [8].
assumption of Assumption 2 is less conservative

than 11— G(x) G ;' (0]l «<1.

M. Controller Design

We use the following observer to estimate the
state x

x=AZ+B[ F,(D+ G,(Dul+ KLz~ %)  (6)
where L=block diagl Ly, L), Li=[ai,.a’]’,
(&) = block diagl D,(&),~. D, (], and

DAe)=diagl 1/e,,1/( € ™). Note that a design
parameter e is a positive constant to be specified
later on. We choose the observer gain «; such

that (A-LC) is a Hurwitz matrix. Let e =x i— x|

FHAT A 49 A= 2HWE o] & Ao A
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be the estimation error and define the scaled
variables ¢i=(1/ ¢ "")e ' It can be shown that

the closed-loop system is given by

x=Ax+ B{F(x) + G(x)u(%)]

et = (A-—LOt+eB[F(x)-F (%
+ (G0 — G (D)u(D]

(N
(8)

where ¢=[¢1 - ¢ 67 E 7] ’. For small e,
the closed-loop system is a singularly perturbed

system with x as the slow variable and ¢ as the
fast We choose the

AD=[o (D, ou(D]]

C(D=FiAm i R hetm iR,

surface
that

1<i<m where

one. sliding

such

[

m ! are chosen such that A, is Hurwitz where
0 0 1 0
A= : :
0 . 0. 1
—mi o —my o~ my g —mM g
Rewrite o(x) as o(x) = Mx where
M= block diag{M,,- M,], M;=[m}{ - m}_, 1]. We
consider a control input of the form

wu;=¢(D+vL{xsen( ¢,(x)) where ¢ (% and v (%
are continuous and globally bounded functions.
We will specify u«, later on. To show semiglobal
stabilization, we need to show that a region of
attraction of the closed-loop system (7)-(8) can
be made arbitrarily large. To this end, we assume
that initial condition of state variable x(0) belongs
to any given compact set 2, Define the
A= block diag] A,,-, A,]
B=block diag] B,,~. B,] where B,=[0,11 %, -1

matrices and

for 1<i<m. Since A is a Hurwitz matrix, for any
positive definite matrix Q, there is a symmetric
positive  definite P that
PA+ ATp=—¢g'". zi=[xi, 2],
z2=[zy, 2.7, and Wz)=2zTP:. Since I|IMxl and
V(z) is radially unbounded, i.e., lim||Mxl| = o and

matrix such

Define

lim (x)=o, we can choose ¢, and ¢, large
o

enough such that 2,={xe R" | [iMxl<c,

VWa)<c,) and ©@,c,. Choose ¢, and c,, such

that Q,={xeR"| IMxi<c,,V W2)<c,} where
CS‘V>CSOl Czr>czoy C o™ KHZ/al)csn ’ 7>1v
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21=2 7in(Q /2 e (P), and a;=2||PBI/VA (D). The
set £, is taken as the region of interest in our
analysis. Note that 2,c2,. The motivation for
choosing 2, in this form will become clear as we
with the Let
Q,={teR” | Iltl<c/e" "} where y= max, r, for
all i=1,--,m and ¢ is an arbitrary positive
constant. Define a set

proceed analysis.

2=0.,x £, (9)

Note that the set £, implies that any point
within the oder of 1 distance from 2, is allowed

as an initial condition for =.

Lemma 1
Consider the singularly perturbed system
(7)-(8) and suppose that Assumption 2
satisfied. Then, for all (x(0),0)e8, there exists
e, and T,=T,(e)<T; such that for all 0<e<e,,
lHell< ke for all [T\, Ty where
time and T,> T is the first time (¥ exits from
the set 2,
Proof : See [ 8, Lemma 1]

is

T, Is a finite

It is shown in the proof of Lemma that the fast
variable ¢ decays very rapidly during a short
time period [0, T,] due to the use of the globally
bounded control. We design the control input #(z)
such that a sliding mode condition is satisfied
when ||¢l< ke and (x, <L ,x2,. This will be done
by showing that o2 To( <0 as long as o(x)=0.
We have

cDAHD = o7(80/32) 2
=0TM[AZ+ B( F (D + G D) + X LC(x— )]

=0 "M{Ax+ B(F (D) + G (Du(2)+(1/ ) N e)LCEI(10)

where IXe) = block diag[ d,(&),, dm(e)] and
d:(e)=diagle ", e" "%, e1]. It can be shown
that the last term on the right-hand side of

equation (10) is given by

(1/e)IXLCt=(1/ &) Xe)LCnpt B () + X&) (11)

(955)
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for x=0, where ¢.(x)=F(z)—F (%. Therefore we

need an estimate of (1/e)IXe)LCy to design the
control input u such that a sliding mode condition
satisfied. It be that

(1] OMIXILCr=(1/ OMDOIL [, Co'4=LON=e

is can shown

x B{G(D)G ;' (%) — G o( Dv(Dal+ Ke)
telT,+eln(1/e), T,) where uv(deK(u(H} for
almost all ¢ and the convex hull K{«(#} is defined
in ' Let k., be an essential upper bound of the

for

ith component for vector
G *)u to be specified. Choose the observer gain

absolute value of

1

a ! such that all eigen values of (A-LC) are real

and negative. It can be verified that

[« 1/ OMXOL || Ce A=t S GRG ;D=1 (1)
xG (Du(hdl] |<[Ne,),

where [-1, denotes the ith component of a

vector, and k,=[ku,....k.m] . Define the constant

k. by the inequality

|[ = M(Ax+ BF () —o(x) sgn(0)] |<k, (13)
for almost every €0, where
o( )=diaglp(-),...,0.(-)] and sgnlo) =
[sgn(o),...,sen(o,)]’. Notice that %, can be

calculated since F,-) and p(-) are known.

Define the vector

F= (I~N) "Nk, + 6 (14)

where &0 is a vector such that (I-NMé&0 and
k=[kgy, ...k’ Since the matrix (I-N) is an
M-matrix, such a vector ¢ always exists [°7
Consider the function

KD =G (D[~ MAZ—F (2) - (o(2) + 2)sgn(o(x))]

where x=diag{ x...., x,] and ith

component of the vector ». We take the control

%, is the
input u as %), saturated outside the set £,. In
let MDD =-G,(DMAx+BF (%),
IR =—G ;M Do(x) +x),
take

particular,

Si=max z,|¢ XD, and

u{D=S! sa{ $ (%/S1})

15
+57? saf{ 9 U2/ S Hsgnlo (%) (15)



-
o

64 WA

kA o
where saf( +) is the saturation function and ¢ %)

denotes the ith component of the vector ¢'(x).
Inside the set 2,, we have

w(x) =¢(x) (16)
where w(-)=[u,,..,u, . Hence, £, in inequality
(12) can be taken by

k,=ktx (1"

So far we show that how do we make a globally
bounded control input. Moreover, the control input

(15) satisfies a sliding mode condition when

=0, Using (10) and (11),
670 = o= (p( - Y+ x)sgn(a)+(1/ ) X eLCy
+ ¢,(-)+0(e)]

Using (5), (12), and (17), we obtains the following
inequality,

oo = = 3 (x=NkA D) +ek 2o
= - o lU=NT= M +ek o

where o=[la|,...l6,417. After substituting (14),

o7os— 57(I-Mé+ ek 2o ). Utilizing the fact that

(I-N&0, we get oTo<—60o’ for sufficiently
small ¢ where &0 and k is some positive
constant. We summarize our findings in the

following lemma.

Lemma 2
Consider the singularly perturbed system
(7)-(8) with the control input (16). Suppose that
2 is satisfied, A< ke,
=T\, Ty, and is
enough Then, for almost all €[ T\+ein(1/&), Ty),

Assumption and

(x, 0€0,x2, for e small
the sliding mode condition o760 is satisfied for

sufficiently small e.

Lemma 1 implies that the errors between the
state variable x and the estimate x becomes smalil
enough after the short period of time due to the
use of high gain observer. After the error x—zx
becoming small enough, we show that the control
input u (16) satisfies a sliding mode condition in

q& e 2YHkE 0] 43 Aojr] A

(956)
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Lemma 2. It is shown in [ 8, Lemma 3] that for
sufficiently small ¢, |/gli<ke and (x, )=@,xQ,, for
all T=Tye)+eln(1/e).
sliding mode condition is satisfied, the trajectories
of (6) reach the sliding manifold o(x)=0 within a
finite time and stay in

t>7, Wwhere Since a

the manifold thereafter.
Using a standard Lyapunov argument on the
sliding manifold, we can arrive the following
theorem.

Theorem 1
Consider globally defined the system (7)-(8).
Suppose that Assumption 2 are satisfied. Let the
observer gain be chosen as in (6) and the control
input be chosen as in (16). Then there is e,>0
such that for all 0<e<e,, the closed-loop system
(7)-(8) and (16) is uniformly ultimately bounded
with respect to the
0.={(x,0eR"xXR" | |Ixl<k V&l k e},

set
for
some constants k, and k&, and &, defined by (9),
is an estimate of the region of attraction.
Moreover, suppose that G(x)=G,(x) VxeR” Then
there is e3>0 such that for all 0<e<e,, the origin
of the closed-loop system (7)-(8) and (16) is
asymptotically stable and 2, defined by (9), is an
estimate of region of attraction.

Proof : See [8& Theorem 1]

Remark 3
e The control input u used in [8] satisfied a
sliding mode condition with a different
control Using a

standard Lyapunov analysis technique,

input u of this paper.
a
stability analysis of the closed-loop system
performed on a sliding manifold in [8]. We
show that a sliding mode condition is
satisfied in Lemma 2. The same stability
[8] can be
applied. Hence we omit the proof of the
Theorem 1.

We state Theorem 1
convenience. Since the mapping T(-) is a
diffeomorphism, the property of Theorem I
hold in w-coordinate.

analysis method used in

in x-coordinate for
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V. Example

Consider the following globally defined MIMO
system

x
y

[}

Ax+ Bl F(x) + G(x)u] (18)
Cx

where

A= block diagl A, A,], A,-=[8 (1)]’

B= block diagl B,,B,1, B;=[0117,
C=block diaglC,,C,l, C,=[1 0],

F=[8,sin(x,) 8,x%] Tou=lu, u,’,

G(x)= [ 013 012] , and unknown constant

84i=1,2=(-0.8, 0.8]. Suppose that [lxO)I<I.
Notice that we assume that the initial condition of
x is in the inside of unit ball for convenience. Our
goal is a design of output feedback controller that
stabilize the system represented by (18). Take the
F-)=0 and

nominat functions

G- )=[ 013 0i2]_ We construct the observer a

2=Ax+B(G (- )ub+ DLC(x— )
where

L=block diaglL,,L,], L,=[3 217,

Dle) = block diaglD (&), De)], D{e)=diagll/e,1/e’].
One can verify that (A~LC) is a Hurwitz matrix.
The sliding surface is chosen by o(x) = Mx where

1

0.8

time

-

] 2 4 €

time

b = I L R
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M=block diaglM,M,] and M,=[2 1]. We take the
set 2,={xeRY |IMxl<4, V V(x)<3) where
V(x)=x%i+x% It can be verified that the set
HeOli<leR,. It can be also verified that for
x€2, |F'U)-FiW|<lx)) and |F¥0)—-Fi(xl<xj.
#(x)= G, [ — MAx— (p(x) +x)sgn(0)]
o) =diagle (- ),00( )], 0. )=Ix |,
and  x=diagl0.3, 0.3]. Let

Define where
0+ )=x ‘3,
$UD==GC ;' MAz,
0% =—G:'(e( -)+x) and take a control input as
u{(X)=5 lsat{ ¢ {R)/ S 1)+ Sisat{ ¢ 2/ ST)segn(o {x)
for i=1,2 where S)= max 2, |¢ %0l We determine
Si1=10(=1,2), $i=3.3, and $3=9.3. It should be
emphasized that the control input depends on
initial condition. We simulate the response for
g,=0,=0.8, xM=[10101", and 2O=[0000]17
with e=0.01.

Figure 1 shows that the origin of closed-loop
system is asymptotically stable, which is
predicted by Theorem 1 since G(x)=G,(x). One
can observe that state variables x,(#), x:(# do not
exhibit peaking due to the use of globally bounded
control input. Peaking is evident in x3(#), but it is
not our concern since the estimate is just a
computed value, not physical variable. We give
the plot of x,(#), x,(#» and their estimates. One

can verify that similar result can be obtained for

time

o] 0.5 1 1.5
time

Fig.1. The plot of state variables and their estimates.
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x5(8, x,(9 and their estimates. Figure 2 shows
that the control input u is saturated during a
short transient time, which is a consequence of
saturating outside the set 2,.

3
ume

0.25
time

03

a3 2. Aol ¥ w9
Fig. 2. The plot of control input () .

VI. Concluding Remark

We have designed an output feedback VSC that
region of attraction of the closed-loop system
contains any given compact set. The controller
could depend on initial condition. But this will not
cause a problem, since we know a range of initial
condition before we design the controller. The
uniformly ultimately
bounded with respect to 2., which can be made

closed-loop system is
arbitrarily small by decreasing e. Moreover, we
can achieve asymptotic stability when there is no
uncertainty on the input coefficient matrix. We
require that the diagonal components of
{G(-)G,'—1 dominate the off diagonal
components by requiring (I-N) to be M-matrix.
This less

[IGC- )6, =<1 as we required in [8].

requirement is conservative than
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