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Optimal Constant PIDM Feedback Controller using Time
Weighted Performance Index for Linear Multivariable Systems
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Abstract

The design problem of optimal constant PIDM (proportional-integral-derivative and measurable variable)

feedback controller for linear time-invariannt systems is investigated with the time-weighted quadratic per-
formance index. Necessary conditions for an optimality of the controller are derived and an algorithm for computing
the optimal feedback gain is presented. It is shown via example that the design method using the time-weighted

quadratic performance index improves the transient responses of the closed-loop system.,

1. Introduction

Performance index is a single measure of the system’
s performance which emphasizes characteristics of the

response that are deemed to be important, Consider a
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second-order system as shown Fig. 1. It is intended to
find the optimal damping ratio which determines the
various performance indices, A fairly useful performance
index is the integral of the absolute magnitude of the

error (IAE) criterion which is defined as

J,:/l;m|e(t)|dt.

By utilizing the magnitude of the error, the integral ex-

(1)

pression increases for either positive or negative error,
and results in a fairly good underdamped system. For

a second-order system, this performance index has a mi-
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nimum for a damping ratio of approximately 0.7
Another usefull performance index is the integral of

the squared error (ISE) criterion which is defined as

J,anwe’(t)dt, (2)

By focusing on the square of the error function, it pe-
nalizes both positive and negative values of the error.
For a second—order system, this performance index has
a minimun for a damping ratio of 0.5, This performance
index has a merit that it may lead to analytical solution,

A very useful criterion which penalizes long-duration
transients is known as the integral of time-weighted by

the absolute value of error (ITAE), It is given by
5L [Tdetla @)
0

This performance index is much more selective than the
IAE or the ISE: the minimum value of its integral is
much more definable as the system parameters are var
ied. For a second-order system, this performance index
has a minimum for a damping ratio of 0.707.

Other figures of merit which have been proposed are
the integral of time-weighted by the squared error
(ITSE) and the integral of squared time-weighted by
the squared error (ISTSE). These performance indices

are defined, respectively, as

ITSE : J.=_£wte’(t) dt, )

ISTSE:JS:[”ﬁeZ (1) dt. (5)

For a second-order system, ITSE performance index
has a minimum for a damping ratio of 0,594 and ISTSE
performance index has a minimum for a damping ratio
of 0.653. Data available on the ISTSE criterion indicates
that it does result in good responses for systems con-
taining one integration in the open-loop transfer function
2).

In the determination of an optimal constant feedback
gain for linear multivariable systems, one can use the
following generalized time weighted quadratic per-

formance index

J=£mt‘”e’ (t)dt. (6)
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The ITSE and ISTSE performance indices were dis-
cussed for single-input single-output systems in 1) and
2). Linear regulators with respect to this subject were
considered in 3)~6). A similar problems for dynamic
compensators were considered in 7) and 8).

It is well-known that an integral control action is ef-
fective in making the output follow a reference input
with no steady state error and a derivative control action
may give rise to adequate damping of the closed-loop
system. In some cases, there exist unstable systems which
can not be stabilized through the PID feedback control,
Then measurable variable feedback control can be used
to increase stability and performance of the closed-loop
system. The PID feedback controller using time-
weighted quadratic performance index for sampled -data
systems has been considered in 7) and the PIM feedback
controller for continuous—time systems has been handled
in 8) with minimax problem different from that in this
paper.

In this paper, optimal constant PIDM feedback co-
ntroller minimizing a given time-weighted quadratic per-
formance index is considered for continuous-time systems,
Necessary conditions for an optimality are derived and
the presented result is an unified one which is applicable
to several types of controller by removing unnecessary
feedbacks.
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Fig.1. A second-order system

Fig.2. Block diagram of control system,
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2. Problem Fomulation

Consider a linear time-invariant system described
by

x(t) = Ax(t) +Bu(t), x(0)=0 (7~ a)
y (1) = Cx(t) (7-b)
v (1) = Cox (1) (7-¢)

where x is the n—-dimensional state vector, u is the r-
dimensional control vector, y is the r-dimensional me-
asurable output vector to be controlled, y, is m-
dimensional measurable vector without y, and B, C and
Cr have full rank, respectively. It is assumed that the
above system is asymptotically stabilizable by control

considered below, and that

rank of matrix[é %]:n+ r. (8)

When a step reference input y, are added to the system,
the output y is desired to follow y_ with no steday state
error. For this purpose, we consider the following PIDM

feedback control law;

u= K, 2K, (y—vo) ~Knym—Ka (y—ys) (9)
where

2=y s, 2(0) =0,

and K; K, K» and K, are matrices to be determined,

The performance index is given by

3= [0 6y QU ya) + (0 ug) R (uug) dt

(10)

where Q and R are symmetric positive definite matrix

and semidefinite matrix, respectively, and us is the
steady state control given by the state condition.

The problem is to find out the feedback gain matrices

in (9) which minimize the performance index (10).
3. Optimal PIDM Controlier

In steady state, state values are uniquely obtainable

under the condition of (8) as follows:

el ?)][yo} i

(362)
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From (9), us also satisfies the following equation:
Ug== thZs"Kmyms- (12)

Using the variables

XTXTXg, UTUT U, YEy—yg, Yo = Ym ™ Yms,

Z2=Z7Z—Zg, (13)

one can obtain the following equations from (7)

x=Ax+Bu, x(0)=--x, (14

y=Cx {15

y‘m: Cm)_( (16)

z=y=Cx, z(0)=—2z, 17

u= K, 2= K,y ~Kn¥n—Kay. (18
The performance index becomes

J= j; T (Y QY+ W R d. (19
Now, we define the new state vector and the control
vector as

7 _

w [;J, v=u (20)
Then, the augmented system is described by

w (1) =Aw (1) +Bv(1), (1)
where

A= SloB-| g w(o>:[:§j. 22

The control law (18) gives

v=—(I,+KD)'KCw (23
——KCw

where

K=[K, K, Kun Kg], K= (I,+KD) K,

M, 0 1 [ 0]

-0 Cc . 0

C-- 0 c, D= 0 24)
0 CcAl LCB |

Substituting (23) into (21) leads to
w(t)=Fwl(t) @5

where F=A—~BKC.Then, the performance index becomes
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J:fm(in'Qw+w’C'R’RRCw) dt, (26)

where Q=diag(0Or, C'QC).
Theorem 1 : In order that the feedback gain matrix
K be optimal with respect to the performance index (10),

it 1s necessary that

— N+1 — e
ay/ak =204 5k | - B'S (PL) +RKCLy, |
ST 0-R'D)

. -1 '1,37,_/5-, Or, st./sc;u, Or]
R et

=0 @7

where P, and L, satisfy the following equations:

F'P,+ P,F+N!1Q=0 (28~a)

F Ptn“‘PLHF" Pi ( :1."',Nf'1> (28_b)

F' Py, + Py F+P,+C K’ RKC— (28—c)

FL,+L,F+L,,=0 (=1, N) (29 —a)

FLN+1+LN+1F,+W< ) ( ) (29"b)
Then, the final cost becomes

J=w(0) Pu. 1w (0). (30)

Proof of Theorem 1 : Define a Lyapunov function

of the following type

N--i+1

V(t)zgﬁ;:m w’ ()Pw (t) (31

where N is the order of the time-weighting factor. De-

rivative of (31) with respect to time yields

N N-1

.Y _ 1 R s
V (t)_g——(N;i) W (t)P,w(t)
N+1 LN i+1 ,’ . ,
+LZ; _WHHD (WOIF P,+PFlwi(t).
{32)
If rearranged, (32) becomes
- N+l N-i+1
V=2 Ww' (W[ F'P+PF+P,.]
w(t)+ (t/N! WIF'P,+P Flw(t).
(33)

Using (28), one can obtain

V()= —t*"w (1) Qw (1) —w’ (1) K’RKCw (1).

No. 5 1987. 5 —55—

Since F is asymptotically stable, the performance index

(10) becomes

Jf—\' )dt

=V(0)—V ()
=w (O)PN+1W (0)
=tr[ Py,,w (0)w’ (0)]. (35)

To determine the optimal feedback gain matrix K which
minimizes the performance index (35) subject to the
constraints in (28), the Hamiltonian for this problem

is defined as follows:

H(P,L,K) =tr] Pee,w (@) w©)’ ] +er[ L (F'P
P.F+N'Q)]

N-d
+§ tl‘[ Lin (F/ Pul+Pt+lF+Pt)]

+tr[ Lyt (F' Py + Py F+ Pt C’K

*RKC)] (36)

where L,, i=1,..., N+1, is the symmetric Lagrange mu-
itiplier matrix, The necessary conditions for solution are
derived by taking the partial dervatives of (36) with
respect to P,, L., and K, and equating them to zero, The
partial derivatives of (36) with respect to P, and L,
yield (29) and (28), respectively. The partial derivative
of (36) with respect to K also gives rise to (27), There-
fore, the proof is completed.

The result in Theorem 1 contains the solutions to se-
veral types of control. However, for a special type of
control, it has superflous terms and is tedious in form,
In the following, necessary conditions for an optimality
about various useful control types are considered.

(PI Control)

In this case, D= 0 and K=K. In order that the PI

controller be optimal with respect to the performance

index (10), it is necessary that
N+t _ —, "
dJ/dK=2{*B/ > (P;L,)+RKCLN“}C —2{Kp™!
i=1

&8y OT

where P;, and L satisfy (28) and (29) with the fo-

llowing parameters;

K=[K, K,], C= [16 g]
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(PID Control)
In order that the PID controller be optimal with re-
spect to the performance index (10), it is necessary that

AJ/dK =2 (1+ D’ K’)"[—B’N“ (P,L,)+RKCLN+,]

i
C (I_R/_D/ )—2(K$) ' (1, 04) Py
ZsZ s/, 0, Or]__
[xszs', 0,, 0, 0
where P, and L, satisfy (28) and (29) with the following

parameters;

I, 0 0
C=|0 cl, D=1 o
0 CA CB
K=[K,, K, K,, K=(I,+K,CB)'K.

(PIM Control)
In order that the PIM controller be optimal with re-
spect to the performance index (10), it is necessary that

N+1

dJ/dK=2[——§' by (P,LJ—FRK(’?LNHJC’—2(K§)“

(1,.0,) PN“[zsz;, 0r, 2z:x:Ch ]=0

’ 7’
XsZg, Or, XexsCh

where P, and L, satisfy (28) and (29) with th following

parameters:

I,
K=K=[K,K,,Kal, C=|0
0

O Q@

A Computational Algorithm

The gradient of J with respect to the unknown el-
ements in K given by (27) is set equal to zero, to get
the necessary conditions for a minimum J. The necessary
conditions of anoptimality cannot directly give the fe-
edback gain K, as they involve P;, and L, expressed in
terms of K as in (28) and (29), respectively. Moreover,
the resulting equations are nonlinear, However, as ex-
plicit expressions are available for J and dJ /dK, a gr-
adient technique such as the Davidon-Fletcher-Powell
algorithm 9) may be employed to determine K, The

computaional algorithm is given below. Let
z=col(K).

Step 1 : Find Ko so that (X:ﬁio 6) is stable. Set i=

Weighted Performance Index for Linear Multivariable Systems

j=0.

Step 2 : Find J(K,).

Step 2 : Compute g,=col(dd /dK) (K,). If ||g, Ilis
sufficiently small, stop: otherwise go on.

Step 4 : If j¥0, define

(zi—2zyy) (2~ 2y )’
H.=H B + 1 ; i i-1
¢ 1 (Zt*Zt-l) (gi—gioy)
_ H,_, (gt‘gml) (gi_gtAl)/Hl—l
(gl_gi—l) Hi—l(gi_gi—l)

or else set H;=1; determine
s;=—H,g,.
Step 5 : Perform a one-dimensional minimization

J(z,+a;s) =min J(z,+as,).
a=0
Let 2,,, =2+ a;s, and i=i+1, If j= 2dim[ z], set j—
0, or else j=j+1.
Return to step 3.

4. A Numerical Example

The buck type switching regulator in Fig. 3 is con-
sidered. To obtain the state differential equation for this
analysis, the state space averaging concept has been ad-
opted 10)~11). With the choice of the state vector,

x(t) =[ Va(t) V,(t) in(t) i, )]”

one can obtain the following system matrices;

— Ry (1/L,+1/L,) R;/L,
_RL(RA/L2+1/RLC2)
A=| RR/L: (Ri+R)] S
1/L, —1/L,
l/Cl_R]Rl/Ll Rst/Lz_l/Cl
0 RL (l/cz_RzRA/Lz)
(R.+R)
—R,/L, 0
0 “Rz/Lz

B=[R,/L, 0 /L, 0]
C=[0 1 0 0]
Ca=[1 0 0 0]

where y(t) and Y,(t) denote output voltage and

measurable output voltage, without respectively.

(364)
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Fig. 3. Circuit diagram of the buck type switching re-
gulator,
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Fig, 4. Tranisent responses of the closed—loop system
(a) N= 0, (b) N== 2. (¢c) N=5.

Table. 1.0ptimal constant gains and settling times
(t:=0.005 sec., R=0.2).

time weighting | optimal gains | settling
index (N) K: I, 1, time (msec)
0 7211 191 11,7 | 22

2 8931 1.00 183 | 10

5 6827 1,12 188 | 9.3

We consider the following PIM controller;

U.(t) =—K;z (t)_‘Kp[y(t)*YS]'_Km}'m(t)
z () =y(t)—ys, 2(0)=0

and adopt the following performance index
J=fn [ (t/t,)*y*+Ru]dt

where N is positive integer. Then, the weighting ma-

trix Q becomes as
Q=diag(0, 0, 1/t,), 0, 0)

were tr in the performance index is used to give re-
latively larger weighting on the sustained output error
after expected rising time, System parameters are as fo-

llows:

L,=L,=0.3mH, R,=R,=0.0150hm
C,=C,=330uF, R;=R,=0.1 ohm
R, =10 ohm, V,e,=y,=20V.

The optimal PIM feedback gains from the proposed al-
gorithm are derived as shown in Table 1 and the trans-
ient responses of the output voltage are simulated as
shown in Fig. 4. As can be seen in Table 1, 5% settling
time of output response using the time-weighted qu-
adratic performance index (N= 2, 5) is shorter than
that of using the conventional quadratic performance

index (N=0) due to the oscillatory response.
5. Conclusion

In this paper, necessary conditions to be satisfied by
an optimal constant PIDM controllers using a class of
time-weighted quadratic performance indices have been
derived for linear time-invariant multivarible systems.
This design method of the regulators using the time-

weighted quadratic performance index provides better

(365)
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performance characteristics in the time domain compared

to the one using conventional quadratic performance index.

This design technique has been utilized to improve the
transient performance for the buck-type switching re-
gulator, Computer simulations have also been given to
show the usefulness of this technique. An algorithm for
computing the optimal constant feedback gain has been

presented.
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