• Title/Summary/Keyword: Multilevel Inverters

Search Result 109, Processing Time 0.025 seconds

Shunt Active Filter for Multi-Level Inverters Using DDSRF with State Delay Controller

  • Rajesh, C.R.;Umayal, S.P.
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.863-870
    • /
    • 2018
  • The traditional power control theories for the harmonic reduction methods in multilevel inverters are found to be unreliable under unbalanced load conditions. The unreliability in harmonic mitigation is caused by voltage fluctuations, non-linear loads, the use of power switches, etc. In general, the harmonics are reduced by filters. However, such devices are an expensive way to provide a smooth and fast response to secure power systems during dynamic conditions. Hence, the Decoupled Double Synchronous Reference Frame (DDSRF) theory combined with a State Delay Controller (SDC) is proposed to achieve a harmonic reduction in power systems. The DDSRF produces a sinusoidal harmonic that is the opposite of the load harmonic. Then, it injects this harmonic into power systems, which reduces the effect of harmonics. The SDC is used to reduce the delay between the compensation time for power injection and the generation of a reference signal. The proposed technique has been simulated using MATLAB and its reliability has been verified experimentally under unbalanced conditions.

A Simple Method for Conducting Angle Calculation of Switching Devices in Cascaded Inverters Using Step Pulse Waves (스텝 펄스파를 사용하는 캐스케이드 인버터에서 스위치의 간단한 도통각 계산법)

  • 김형창;김태진;강대욱;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.6
    • /
    • pp.488-495
    • /
    • 2003
  • In recent years, the multilevel inverter synthesizing the output voltage with step pulse has been widely used rather than PWM method as a solution for high power and high voltage applications. This method takes advantage of lower switching losses due to one switching for one period. This paper proposes a simple method to obtain the conducting angle. This method is implemented by using voltage-second areas of the divided reference voltage according to the output voltage levels. It Is possible to reduce an amount of calculation because it is not required to solve the simultaneous equations by an iterative method. Also, the proposed method can get the conducting angle by means of on-line.

Half and Full-Bridge Cell based Stand-Alone Photovoltaic Multi-Level Inverter (하프ㆍ풀-브리지 셀을 이용한 독립형 태양광 멀티레벨 인버터)

  • Kang Feel-Soon;Oh Seok-Kyu;Park Sung-Jun;Kim Jang-Mok;Kim Cheul-U
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.438-447
    • /
    • 2004
  • A new multilevel PWM inverter using a half-bridge and full-bridge cells is proposed for the use of stand-alone photovoltaic inverters. The configuration of the proposed multilevel PWM inverter is based on a prior 11-level shaped PWM inverter. Among three full-bridge cells employed in the prior inverter, one cell is substituted by a half-bridge cell. Owing to this simple alteration, the proposed inverter has three promising merits. First it increases the number of output voltage levels resulted in high quality output voltages. Second, it reduces two power switching devices by means of employing a half-bridge cell. Third, it reduces power imposed on a transformer connected with the half-bridge unit. That is to say, most power is transferred to loads via cascaded transformers connected with low switching inverters, which are used to synthesize the fundamental output voltage levels whereas the output of a transformer linked to a high switching inverter is used to improve the final output voltage waves; thus, it is desirable in the point of the improvement of the system efficiency. By comparing to the prior 11-level PWM inverter, it assesses the performance of the proposed inverter as a stand-alone photovoltaic inverter. The validity of the proposed inverter is verified by computer-aided simulations and experimental results.

Wind Energy Interface to Grid with Load Compensation by Diode Clamped Multilevel Inverters

  • Samuel, Paulson;Naik, M. Kishore;Gupta, Rajesh;Chandra, Dinesh
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.271-281
    • /
    • 2014
  • Fluctuating wind conditions necessitate the use of a variable speed wind turbine (VSWT) with a AC/DC/AC converter scheme in order to harvest the maximum power from the wind and to decouple the synchronous generator voltage and frequency from the grid voltage and frequency. In this paper, a combination of a three phase diode bridge rectifier (DBR) and a modified topology of the diode clamped multilevel inverter (DCMLI) has been considered as an AC/DC/AC converter. A control strategy has been proposed for the DCMLI to achieve the objective of grid interface of a wind power system together with local load compensation. A novel fixed frequency current control method is proposed for the DCMLI based on the level shifted multi carrier PWM for achieving the required control objectives with equal and uniform switching frequency operation for better control and thermal management with the modified DCMLI. The condition of the controller gain is derived to ensure the operation of the DCMLI at the fixed frequency of the carrier. The converter current injected into the distribution grid is controlled in accordance with the wind power availability. In addition, load compensation is performed as an added facility in order to free the source currents being fed from the grid of harmonic distortion, unbalance and a low power factor even though the load may be unbalanced, non-linear and of a poor power factor. The results are validated using PSCAD/EMTDC simulation studies.

Quick Diagnosis of Short Circuit Faults in Cascaded H-Bridge Multilevel Inverters using FPGA

  • Ouni, Saeed;Zolghadri, Mohammad Reza;Rodriguez, Jose;Shahbazi, Mahmoud;Oraee, Hashem;Lezana, Pablo;Schmeisser, Andres Ulloa
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.56-66
    • /
    • 2017
  • Fast and accurate fault detection is the primary step and one of the most important tasks in fault tolerant converters. In this paper, a fast and simple method is proposed to detect and diagnosis the faulty cell in a cascaded H-bridge multilevel inverter under a short circuit fault. In this method, the reference voltage is calculated using switching control pulses and DC-Link voltages. The comparison result of the output voltage and the reference voltage is used in conjunction with active cell pulses to detect the faulty cell. To achieve this goal, the cell which is active when the Fault signal turns to "0" is detected as the faulty cell. Furthermore, consideration of generating the active cell pulses is completely described. Since the main advantage of this method is its simplicity, it can be easily implemented in a programmable digital device. Experimental results obtained with an 11-level inverter prototype confirm the effectiveness of the proposed fault detection technique. In addition, they show that the diagnosis method is unaffected by variations of the modulation index.

An Improvement of Voltage Disturbances for Fuel Cell Systems (연료 전지 시스템의 전압왜란 개선)

  • Moon Hyun-Wook;Jeong Eun-Jin;Kim Yoon-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.5
    • /
    • pp.245-252
    • /
    • 2005
  • The fuel cell systems are one of very useful energy sources. The systems have advantages as renewable and environmental sources. To obtain AC components from fuel cells, it needs inverters. A multilevel converter is used as a power conversion system for a high power fuel cell system. Through harmonic analysis, it is shown that the harmonic components and THD increase while a fundamental component of output decreases as voltage droop increases. To solve the voltage disturbance problems, three different approaches are investigated in this paper; installation of a boost converter at the fuel cell output, control of pulse widths, and use of ultracapacitors. The proposed three approaches are analyzed and compared through simulation and experimental results.

Analysis of Carrier PWM Algorithms For Three Phase Four Wire Multi-level Inverter

  • Nho Nguyen Van;Youn Myung Joong
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.635-639
    • /
    • 2004
  • This paper presents a simple PWM method to control three phase four leg multilevel inverters, which have been developed for supplying electrical power to three phase unbalanced load and for related power active filters. The method is derived from a general correlation between space vector PWM (SVPWM) method and carrier based PWM (CPWM) method. As an advantage, the simplicity and flexibility of the proposed CPWM control can be obtained and the complicated calculations of the 3-D SVPWM concepts can be avoided. The method has been mathematical formulated and demonstrated by simulation results.

  • PDF

A Simple Method for Conducting Angle Calculation of Switch Devices in Cascaded Inverters Using Step Pulse Waves (스텝 펄스파를 사용하는 캐스케이드 인버터에서 스위치의 간단한 도통각 계산법)

  • Kim H.C.;Kim T.J.;Kang D.W.;Hyun D.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.588-592
    • /
    • 2003
  • In recent years, the multilevel inverter synthesizing the output voltage with step pulse has been widely used as a solution for high power and high voltage applications. This paper proposes a simple method to obtain the conducting . angle. It is calculated by using voltage-second areas of the divided reference voltage according to the output voltage levels and these areas have influence on output step pulse waves. It is possible to reduce an amount of calculation because it is not required to solve the simultaneous equations by an iterative method. Also, the proposed method can get the conducting angle by means of on line.

  • PDF

Multilevel inverter using two 5-level inverters connected in series (두 대의 5-레벨 인버터의 직렬 결합을 이용한 멀티레벨 인버터)

  • Choi, Won-Kyun;Hong, Un-Taek;Kwon, Cheol-Soon;Hyun, Seok-Hwan;Kang, Feel-Soon
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.504-505
    • /
    • 2010
  • 본 논문에서는 양방향 스위치를 가지는 기존의 5-레벨 인버터를 직렬 결합하여 보다 많은 출력 전압 레벨을 형성할 수 있는 멀티레벨 인버터 구조를 제안한다. 제안된 회로는 동일한 출력 전압 레벨 형성시 기존의 Cascaded H-bridge cell 방식보다 사용하는 스위칭 소자를 줄일 수 있어 시스템 크기, 비용, 전력 손실을 저감시킬 수 있는 장점을 가진다. 제안된 회로는 입력 전압원의 크기를 5의 배수로 구성함으로서 보다 많은 수의 레벨을 생성시킬 수 있는 특징을 가진다. 본 논문에서는 두 대의 5-레벨 인버터를 직렬 결합함으로써 25-레벨의 출력전압을 생성시킬 수 있는 인버터에 대한 특성을 분석하고 시뮬레이션과 실험을 통해 타당성을 검증한다.

  • PDF

Design and Implementation of a Multi Level Three-Phase Inverter with Less Switches and Low Output Voltage Distortion

  • Ahmed, Mahrous E.;Mekhilef, Saad
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.593-603
    • /
    • 2009
  • This paper proposes and describes the design and operational principles of a three-phase three-level nine switch voltage source inverter. The proposed topology consists of three bi-directional switches inserted between the source and the full-bridge power switches of the classical three-phase inverter. As a result, a three-level output voltage waveform and a significant suppression of load harmonics contents are obtained at the inverter output. The harmonics content of the proposed multilevel inverter can be reduced by half compared with two-level inverters. A Fourier analysis of the output waveform is performed and the design is optimized to obtain the minimum total harmonic distortion. The full-bridge power switches of the classical three-phase inverter operate at the line frequency of 50Hz, while the auxiliary circuit switches operate at twice the line frequency. To validate the proposed topology, both simulation and analysis have been performed. In addition, a prototype has been designed, implemented and tested. Selected simulation and experimental results have been provided.