• Title/Summary/Keyword: Moore spaces

Search Result 13, Processing Time 0.022 seconds

CERTAIN SUBGROUPS OF SELF-HOMOTOPY EQUIVALENCES OF THE WEDGE OF TWO MOORE SPACES

  • Jeong, Myung-Hwa
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.1
    • /
    • pp.111-117
    • /
    • 2010
  • For a based, 1-connected, finite CW-complex X, we denote by $\varepsilon(X)$ the group of homotopy classes of self-homotopy equivalences of X and by $\varepsilon_#\;^{dim+r}(X)$ the subgroup of homotopy classes which induce the identity on the homotopy groups of X in dimensions $\leq$ dim X+r. In this paper, we calculate the subgroups $\varepsilon_#\;^{dim+r}(X)$ when X is a wedge of two Moore spaces determined by cyclic groups and in consecutive dimensions.

REAL POLYHEDRAL PRODUCTS, MOORE'S CONJECTURE, AND SIMPLICIAL ACTIONS ON REAL TORIC SPACES

  • Kim, Jin Hong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.1051-1063
    • /
    • 2018
  • The real moment-angle complex (or, more generally, real polyhedral product) and its real toric space have recently attracted much attention in toric topology. The aim of this paper is to give two interesting remarks regarding real polyhedral products and real toric spaces. That is, we first show that Moore's conjecture holds to be true for certain real polyhedral products. In general, real polyhedral products show some drastic difference between the rational and torsion homotopy groups. Our result shows that at least in terms of the homotopy exponent at a prime this is not the case for real polyhedral products associated to a simplicial complex whose minimal missing faces are all k-simplices with $k{\geq}2$. Moreover, we also show a structural theorem for a finite group G acting simplicially on the real toric space. In other words, we show that G always contains an element of order 2, and so the order of G should be even.

RIGHT AND LEFT QUOTIENT OF TWO BOUNDED OPERATORS ON HILBERT SPACES

  • Benharrat, Mohammed
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.547-563
    • /
    • 2020
  • We define a left quotient as well as a right quotient of two bounded operators between Hilbert spaces, and we parametrize these two concepts using the Moore-Penrose inverse. In particular, we show that the adjoint of a left quotient is a right quotient and conversely. An explicit formulae for computing left (resp. right) quotient which correspond to adjoint, sum, and product of given left (resp. right) quotient of two bounded operators are also shown.

WEIGHTED GDMP INVERSE OF OPERATORS BETWEEN HILBERT SPACES

  • Mosic, Dijana
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.1263-1271
    • /
    • 2018
  • We introduce new generalized inverses (named the WgDMP inverse and dual WgDMP inverse) for a bounded linear operator between two Hilbert spaces, using its Wg-Drazin inverse and its Moore-Penrose inverse. Some new properties of WgDMP inverse and dual WgDMP inverse are obtained and some known results are generalized.

CERTAIN SUBGROUPS OF SELF-HOMOTOPY EQUIVALENCES OF THE WEDGE OF TWO MOORE SPACES II.

  • Jeong, Myung-Hwa
    • The Pure and Applied Mathematics
    • /
    • v.16 no.2
    • /
    • pp.193-198
    • /
    • 2009
  • In the previous work [5] we have determined the group ${{\varepsilon}_{\sharp}}^{dim+r}^{dim+r}(X)$ for $X\;=\;M(Z_q,\;n+1){\vee}M(Z_q,\;n)$ for all integers q > 1. In this paper, we investigate the group ${{\varepsilon}_{\sharp}}^{dim+r}(X)$ for $X\;=\;M(Z{\oplus}Z_q,\;n+1){\vee}M(Z{\oplus}Z_q,\;n)$ for all odd numbers q > 1.

  • PDF

PERTURBATION ANALYSIS OF THE MOORE-PENROSE INVERSE FOR A CLASS OF BOUNDED OPERATORS IN HILBERT SPACES

  • Deng, Chunyuan;Wei, Yimin
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.831-843
    • /
    • 2010
  • Let $\cal{H}$ and $\cal{K}$ be Hilbert spaces and let T, $\tilde{T}$ = T + ${\delta}T$ be bounded operators from $\cal{H}$ into $\cal{K}$. In this article, two facts related to the perturbation bounds are studied. The first one is to find the upper bound of $\parallel\tilde{T}^+\;-\;T^+\parallel$ which extends the results obtained by the second author and enriches the perturbation theory for the Moore-Penrose inverse. The other one is to develop explicit representations of projectors $\parallel\tilde{T}\tilde{T}^+\;-\;TT^+\parallel$ and $\parallel\tilde{T}^+\tilde{T}\;-\;T^+T\parallel$. In addition, some spectral cases related to these results are analyzed.

TORSION IN THE COHOMOLOGY OF FINITE H-SPACES

  • Choi, Young-Gi
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.6
    • /
    • pp.963-973
    • /
    • 2002
  • We study torsion phenomena in the integral cohomology of finite if-spaces X through the Eilenberg-Moore spectral sequence converging to H*($\Omega$X; Z$_{p}$). We also investigate how the difference between the Z$_{p}$-filtration length f$_{p}$(X) and the Z$_{p}$-cup length c$_{p}$(X) on a simply connected finite H-space X is reflected in the Eilenberg-Moore spectral sequence converging to H*($\Omega$X;Z$_{p}$). Finally we get the following result: Let p be an odd prime and X an n-connected finite H-space with dim QH* (X;Z$_{p}$) $\leq$ m. Then H*(X;Z) is p-torsion free if (equation omitted).tion omitted).

WEIGHTED MOORE-PENROSE INVERSES OF ADJOINTABLE OPERATORS ON INDEFINITE INNER-PRODUCT SPACES

  • Qin, Mengjie;Xu, Qingxiang;Zamani, Ali
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.691-706
    • /
    • 2020
  • Necessary and sufficient conditions are provided under which the weighted Moore-Penrose inverse AMN exists, where A is an adjointable operator between Hilbert C-modules, and the weights M and N are only self-adjoint and invertible. Relationship between weighted Moore-Penrose inverses AMN is clarified when A is fixed, whereas M and N are variable. Perturbation analysis for the weighted Moore-Penrose inverse is also provided.

SELF-HOMOTOPY EQUIVALENCES OF MOORE SPACES DEPENDING ON COHOMOTOPY GROUPS

  • Choi, Ho Won;Lee, Kee Young;Oh, Hyung Seok
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1371-1385
    • /
    • 2019
  • Given a topological space X and a non-negative integer k, ${\varepsilon}^{\sharp}_k(X)$ is the set of all self-homotopy equivalences of X that do not change maps from X to an t-sphere $S^t$ homotopically by the composition for all $t{\geq}k$. This set is a subgroup of the self-homotopy equivalence group ${\varepsilon}(X)$. We find certain homotopic tools for computations of ${\varepsilon}^{\sharp}_k(X)$. Using these results, we determine ${\varepsilon}^{\sharp}_k(M(G,n))$ for $k{\geq}n$, where M(G, n) is a Moore space type of (G, n) for a finitely generated abelian group G.