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WEIGHTED GDMP INVERSE OF OPERATORS BETWEEN

HILBERT SPACES

Dijana Mosić

Abstract. We introduce new generalized inverses (named the WgDMP
inverse and dual WgDMP inverse) for a bounded linear operator between

two Hilbert spaces, using its Wg-Drazin inverse and its Moore-Penrose in-

verse. Some new properties of WgDMP inverse and dual WgDMP inverse
are obtained and some known results are generalized.

1. Introduction

Let X and Y be arbitrary Hilbert spaces. Denote by B(X,Y ) the set of all
bounded linear operators from X to Y . Set B(X) = B(X,X). For an operator
A ∈ B(X,Y ), the symbols N(A), R(A), σ(A), respectively, will denote the null
space, the range and the spectrum of A.

Let W ∈ B(Y,X) be a fixed nonzero operator. An operator A ∈ B(X,Y ) is
called Wg-Drazin invertible if there exists unique B ∈ B(X,Y ) such that

AWB = BWA, BWAWB = B and A−AWBWA is quasinilpotent.

The Wg-Drazin inverse B of A is denoted by Ad,w [4]. If A − AWBWA is
nilpotent in the above definition, then Ad,W = AD,W is the W-weighted Drazin
inverse of A [3, 6, 7]. In the case that X = Y and W = I, then Ad = Ad,W

is the generalized Drazin inverse (or the Koliha-Drazin inverse) of A [8] and
AD = AD,W is the Drazin inverse of A [5].

Let us recall that, if A ∈ B(X,Y ) and W ∈ B(Y,X)\{0}, then the following
conditions are equivalent [4]:

(1) A is Wg-Drazin invertible,
(2) AW is generalized Drazin invertible in B(Y ) with (AW )d = Ad,WW ,
(3) WA is generalized Drazin invertible in B(X) with (WA)d = WAd,W .

Then, the Wg-Drazin inverse Ad,W of A satisfies

Ad,W = ((AW )d)2A = A((WA)d)2.
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The Moore-Penrose inverse of A ∈ B(X,Y ) is the operator B ∈ B(Y,X)
which satisfies the Penrose equations

ABA = A, BAB = B, (AB)∗ = AB, (BA)∗ = BA.

The Moore-Penrose inverse of A exists if and only if R(A) is closed in Y . If
the Moore-Penrose inverse of A exists, then it is unique and denoted by A†.

In [1], Baksalary and Trenkler introduced an inverse of a matrix named core
inverse. Malik and Thome [9] generalized this definition and defined a new
generalized inverse of a square matrix of an arbitrary index. They used the
Drazin inverse and the Moore-Penrose inverse and therefore this new general-
ized inverse is called the DMP inverse. As an extension of the DMP inverse for
a square matrix, the gDMP inverse for a Hilbert space operator was presented
in [11]: let A ∈ B(X) be generalized Drazin invertible such that R(A) is closed.
The gDMP inverse of A is defined as

Ad,† = AdAA†.

The gDMP inverse of a Hilbert space operator can be seen as a generalization
of the DMP inverse of a complex square matrix presented in [9] and as an ex-
tension of the core inverse [1]. Recall that, the MPgD inverse of the generalized
Drazin invertible operator A ∈ B(X) such that R(A) is closed, was defined as
A†,d = A†AAd in [11].

Motivated by extension of the Drazin inverse to the W-weighted Drazin
inverse, Meng [10] defined the W-weighted DMP inverse, generalizing the DMP
inverse of a square matrix to a rectangular matrix.

Our aim is to define new generalized inverses named the WgDMP inverse
and dual WgDMP inverse for a bounded linear operator between two Hilbert
spaces using its Wg-Drazin inverse and its Moore-Penrose inverse. Thus, the
WgDMP inverse of an operator is a generalization of the W-weighted DMP
inverse of a rectangular matrix [10] and the gDMP inverse of a Hilbert space
operator [11]. We give the matrix representations of the WgDMP inverse and
dual WgDMP inverse of an operator. Some new properties of the WgDMP
inverse and dual WgDMP inverse are investigated and their relation with the
gDMP and MPgD inverse, respectively, of corresponding operators.

2. WgDMP inverse and dual WgDMP inverse

In this section, we define and study the WgDMP inverse and the dual
WgDMP inverse of an operator between two Hilbert spaces. We start from
a geometrical point of view.

Theorem 2.1. Let W ∈ B(Y,X)\{0} and let A ∈ B(X,Y ) be W g-Drazin
invertible such that R(A) is closed.

(a) The system of conditions

(1) AB = PR(AWAd,W ),N(Ad,WA†) and R(B) ⊆ R(WAWAd,W ),

is consistent and it has the unique solution B = WAd,WWAA†.
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(b) The system of conditions

(2) CA = PR(A†Ad,W ),N(Ad,WWA) and R(C∗) ⊆ R((AWAd,WW )∗)

is consistent and it has the unique solution C = A†AWAd,WW .

Proof. (a) First, we check that B = WAd,WWAA† satisfies conditions (1).
Obviously, R(B) ⊆ R(WAWAd,W ). From

(3)

BAB = WAd,WWAA†AB

= WAd,WWAWAd,WWAA†

= WAd,WWAA† = B,

we deduce that AB is a projector. Since AB = AWAd,WWAA† and

AWAd,W = AWAd,WWAA†AWAd,W = ABAWAd,W ,

we have that R(AB) = R(AWAd,W ). Also, by AB = AWAWAd,WA† and

Ad,WA† = Ad,WWAd,WWAA†

= Ad,WWAd,WWAWAd,WWAA†

= Ad,WWAd,WWAB,

notice that N(AB) = N(Ad,WA†).
To prove that system (1) has unique solution, assume that two opera-

tors B1 and B2 satisfy (1). Then A(B1 − B2) = PR(AWAd,W ),N(Ad,WA†) −
PR(AWAd,W ),N(Ad,WA†) = 0 implying R(B1 − B2) ⊆ N(A) ⊆ N(WAd,WWA).

The conditions R(B1) ⊆ R(WAWAd,W ) and R(B2) ⊆ R(WAWAd,W ) give
R(B1 − B2) ⊆ R(WAWAd,W ) ∩ N(WAWAd,W ) = {0}. Thus, B1 = B2 and
only one B satisfies (1).

(b) In the similar way, we prove that C = A†AWAd,WW is the unique
solution of system (2). �

Definition 2.1. Let W ∈ B(Y,X)\{0} and let A ∈ B(X,Y ) be W g-Drazin
invertible such that R(A) is closed.

(a) The WgDMP inverse of A is defined as

Ad,W,† = WAd,WWAA†.

(b) The dual WgDMP inverse of A is defined as

A†,d,W = A†AWAd,WW.

If A ∈ B(X) and W = I ∈ B(X) in the above definition, then Ad,† = Ad,W,†

(or A†,d = A†,d) is the gDMP (MPgD) inverse of A [11].

Theorem 2.2. Let W ∈ B(Y,X)\{0} and let A ∈ B(X,Y ) be W g-Drazin
invertible such that R(A) is closed.
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(a) The system of equations

(4) BAB = B and BA = WAd,WWA

is consistent and B = Ad,W,† is one of its solutions.
(b) The system of equations

(5) CAC = C and AC = AWAd,WW

is consistent and C = A†,d,W is one of its solutions.

Proof. (a) For B = Ad,W,†, because B=WAd,WWAA†, then BA=WAd,WWA
and, by (3), BAB = B.

(b) Similarly as (a), we verify this part. �

Theorem 2.3. Let W ∈ B(Y,X)\{0} and let A ∈ B(X,Y ) be W g-Drazin
invertible such that R(A) is closed.

(a) If B satisfies (4), then AWA(B−A†) and A−ABA are quasinilpotent.
(b) If C satisfies (5), then (A†−C)AWA and A−ACA are quasinilpotent.

Proof. (a) Since WAWAd,WWA−WA = WA(WA)dWA−WA is quasinilpo-
tent, then AWA(B −A†) is quasinilpotent by

σ(AWA(B −A†)) ∪ {0} = σ(WA(B −A†)A) ∪ {0}

= σ(WAWAd,WWA−WA) ∪ {0} = {0}.

Evidently, A−ABA = A−AWAd,WWA is quasinilpotent.
The part (b) follows in the same manner. �

As a consequence of Theorem 2.1 and Theorem 2.2, we get the next result.

Corollary 2.1. Let W ∈ B(Y,X)\{0} and let A ∈ B(X,Y ) be W g-Drazin
invertible such that R(A) is closed. The following statements hold:

(a) AAd,W,† is a projector onto R(AWAd,W ) along N(Ad,WA†);
(b) Ad,W,†A = WAd,WWA is a projector onto R(WAd,WWA) along

N(WAd,WWA);
(c) AA†,d,W = AWAd,WW is a projector onto R(AWAd,WW ) along

N(AWAd,WW );
(d) A†,d,WA is a projector onto R(A†Ad,W ) along N(Ad,WWA).

Now, we consider necessary and sufficient conditions for equalities between
certain operators which appear in the previous corollary.

Lemma 2.1. Let W ∈ B(Y,X)\{0} and let A ∈ B(X,Y ) be W g-Drazin in-
vertible such that R(A) is closed. Then

(a) AAd,W,†A = AWAd,W if and only if Ad,W = Ad,WWA if and only if
AA†,d,WA = AWAd,W ;

(b) AAd,W,† = Ad,WA† if and only if Ad,W = AWAd,WWA if and only if
A†,d,WA = A†Ad,W ;
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(c) AA† = AAd,W,† if and only if A = AWAd,WWA if and only if A†A =
A†,d,WA;

(d) A = AAd,W,†A if and only if A = AWAd,WWA if and only if A =
AA†,d,WA.

Proof. The part (a) follows by

AAd,W,†A = AWAd,W ⇔ AWAd,WWAA†A = AWAd,W

⇔ Ad,WWA = Ad,W

⇔ AWAd,W = Ad,W

⇔ AA†AWAd,WWA = Ad,WWA

⇔ AA†,d,WA = AWAd,W .

Similarly, we check the rest. �

Let W ∈ B(Y,X)\{0} and let A ∈ B(X,Y ) be such that R(A) is closed.
Observe that operators A andW have the following matrix representations with
respect to the orthogonal sums X = R(W )⊕N(W ∗) and Y = R(A)⊕N(A∗):

(6) A =

[
A1 A2

0 0

]
:

[
R(W )
N(W ∗)

]
→

[
R(A)
N(A∗)

]
and

(7) W =

[
W1 W2

0 0

]
:

[
R(A)
N(A∗)

]
→

[
R(W )
N(W ∗)

]
,

where D = A1A
∗
1 + A2A

∗
2 maps R(A) into itself and D > 0 (meaning D ≥ 0

invertible). Notice that A1, A2 and D are linear bounded operators and

(8) A† =

[
A∗1D

−1 0
A∗2D

−1 0

]
:

[
R(A)
N(A∗)

]
→

[
R(W )
N(W ∗)

]
.

Meng [10] presented the canonical form for the W -weighted DMP inverse
of a rectangular matrix using the singular value decompositions which is a
powerful tool to investigate various classes of complex matrices. To get the
matrix representation for the WgDMP inverse, we use the matrix forms of
a linear bounded operators (6) and (7), which are induced by some natural
decompositions of Hilbert spaces.

Theorem 2.4. Let W ∈ B(Y,X)\{0} and let A ∈ B(X,Y ) be W g-Drazin
invertible such that R(A) is closed. If A and W are written as in (6) and (7),
respectively, then

(9) Ad,W =

[
Ad,W1

1 (Ad,W1

1 W1)2A2

0 0

]
:

[
R(W )
N(W ∗)

]
→

[
R(A)
N(A∗)

]
and

(10) Ad,W,† =

[
W1A

d,W1

1 W1 0
0 0

]
:

[
R(A)
N(A∗)

]
→

[
R(W )
N(W ∗)

]
.
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Proof. Let

Ad,W =

[
B1 B2

B3 B4

]
:

[
R(W )
N(W ∗)

]
→

[
R(A)
N(A∗)

]
.

From Ad,W = AWAd,WWAd,W , we get B3 = B4 = 0. The equality AWAd,W

= Ad,WWA gives A1W1B1 = B1W1A1 and A1W1B2 = B1W1A2. Further, by
Ad,W = Ad,WWAWAd,W , we obtain

B1 = B1W1A1W1B1

and
B2 = B1W1(A1W1B2) = B1W1B1W1A2 = (B1W1)2A2.

Since

A−AWAd,WWA =

[
A1 −A1W1B1W1A1 A2 −A1W1B1W1A2

0 0

]
is quasinilpotent, then σ(A1 − A1W1B1W1A1) ⊆ σ(A − AWAd,WWA) ∪ {0}
= {0} and so A1 − A1W1B1W1A1 is quasinilpotent. Therefore, B1 = Ad,W1

1

and

Ad,W =

[
Ad,W1

1 (Ad,W1

1 W1)2A2

0 0

]
.

Using (8), the WgDMP inverse of A is represented by

Ad,W,† = WAd,WWAA† =

[
W1A

d,W1

1 W1 0
0 0

]
:

[
R(A)
N(A∗)

]
→

[
R(W )
N(W ∗)

]
.

�

Recall that W ∈ B(Y,X)\{0} and A ∈ B(X,Y ) such that R(A) is closed
can be represented, with respect to the orthogonal sums X = R(A∗) ⊕ N(A)

and Y = R(W ∗)⊕N(W ), by:

A =

[
A1 0
A2 0

]
:

[
R(A∗)
N(A)

]
→

[
R(W ∗)
N(W )

]
,

and

W =

[
W1 0
W2 0

]
:

[
R(W ∗)
N(W )

]
→

[
R(A∗)
N(A)

]
,

where E = A∗1A1 + A∗2A2 maps R(A∗) into itself and E > 0 (meaning E ≥ 0
invertible). In addition, if A is W g-Drazin invertible, we can prove that

Ad,W =

[
Ad,W1

1 0

A2(W1A
d,W1

1 )2 0

]
:

[
R(A∗)
N(A)

]
→

[
R(W ∗)
N(W )

]
and

A†,d,W =

[
W1A

d,W1

1 W1 0
0 0

]
:

[
R(W ∗)
N(W )

]
→

[
R(A∗)
N(A)

]
.

By the previous matrix representations of Ad,W,† and A†,d,W , we have the
next result.
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Theorem 2.5. Let W ∈ B(Y,X)\{0} and let A ∈ B(X,Y ) be W g-Drazin
invertible such that R(A) is closed. Then

(a) Ad,W,†AW = WAAd,W,† if and only if WAd,WW = Ad,W,†;
(b) A†,d,WAW = WAA†,d,W if and only if WAd,WW = A†,d,W ;
(c) AWAA† is generalized Drazin invertible and Ad,W,† = W (AWAA†)d;
(d) A†AWA is generalized Drazin invertible and A†,d,W = (A†AWA)dW .

Proof. (a) Using (6), (7), (9) and (10), we get

Ad,W,†AW =

[
W1A

d,W1

1 W1A1W1 W1A
d,W1

1 W1A1W2

0 0

]
,

WAAd,W,† =

[
W1A1W1A

d,W1

1 W1 0
0 0

]
and

WAd,WW =

[
W1A

d,W1

1 W1 W1A
d,W1

1 W2

0 0

]
.

Hence,

Ad,W,†AW = WAAd,W,† ⇔W1A
d,W1

1 W1A1W2 = 0

⇔W1A
d,W1

1 W2 = 0

⇔WAd,WW = Ad,W,†.

(b) Analogously as part (a).
(c) Since A is W g-Drazin invertible, by (6) and (7), AW =

[
A1W1 A1W2

0 0

]
is generalized Drazin invertible. Hence, A1W1 is generalized Drazin invertible
which implies, applying (8), that AWAA† =

[
A1W1 0

0 0

]
is generalized Drazin

invertible. Now, we obtain

W (AWAA†)d =

[
W1 W2

0 0

] [
(A1W1)d 0

0 0

]
=

[
W1A

d,W1

1 W1 0
0 0

]
= Ad,W,†.

(d) It follows as (c). �

Notice that part (c) and (d) of Theorem 2.5 give a method to obtain the
WgDMP and dual WgDMP inverse by algebraic approach. The part (c) of
Theorem 2.5 recovers [12, Theorem 3.3].

By corresponding definitions, we obtain the next connections between the
WgDMP (or dual WgDMP) inverse of A and the gDMP (MPgD) inverse of
WA (AW ).

Lemma 2.2. Let W ∈ B(Y,X)\{0} and let A ∈ B(X,Y ) be W g-Drazin in-
vertible such that R(A) is closed.
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(a) If R(WA) is closed, then

Ad,W,† = (WA)d,†WAA†, (WA)d,† = Ad,W,†A(WA)†

and R(Ad,W,†) = R((WA)d,†).
(b) If R(AW ) is closed, then

A†,d,W = A†AW (AW )†,d, (AW )†,d = (AW )†AA†,d,W

and N(A†,d,W ) = N((AW )†,d).

Notice that A ∈ B(X,Y ) and W ∈ B(Y,X)\{0} have the following matrix

representations with respect to the orthogonal sums X = R(W )⊕N(W ∗) and

Y = R(A)⊕N(A∗):

(11) A =

[
A1 A2

0 0

]
:

[
R(W )
N(W ∗)

]
→

[
R(A)
N(A∗)

]
and

(12) W =

[
W1 W2

0 0

]
:

[
R(A)
N(A∗)

]
→

[
R(W )
N(W ∗)

]
,

where D1 = A1A
∗
1 +A2A

∗
2 ∈ B(R(A)).

We now present the operator matrix form of the gDMP inverse of WA.

Theorem 2.6. Let W ∈ B(Y,X)\{0} and let A ∈ B(X,Y ) be W g-Drazin
invertible such that R(WA) is closed. If A and W are written as in (11) and
(12), respectively, then
(13)

(WA)d,† =

[
W1A

d,W1

1 W1D1W
∗
1 (W1D1W

∗
1 )† 0

0 0

]
:

[
R(W )
N(W ∗)

]
→

[
R(W )
N(W ∗)

]
.

Proof. The hypothesis A is W g-Drazin invertible implies that

WA =

[
W1A1 W1A2

0 0

]
is generalized Drazin invertible. Therefore,

(WA)† = (WA)∗[WA(WA)∗]† =

[
A∗1W

∗
1 0

A∗2W
∗
1 0

] [
(W1D1W

∗
1 )† 0

0 0

]
=

[
A∗1W

∗
1 (W1D1W

∗
1 )† 0

A∗2W
∗
1 (W1D1W

∗
1 )† 0

]
and, by [2, Theorem 2.3],

(WA)d =

[
(W1A1)d [(W1A1)d]2W1A2

0 0

]
.

Now, we have

(WA)d,† = (WA)dWA(WA)† =

[
(W1A1)dW1DW

∗
1 (W1DW

∗
1 )† 0

0 0

]
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which yields that (13) holds. �

In the case that W ∈ B(Y,X)\{0} and A ∈ B(X,Y ) is W g-Drazin invertible
such that R(AW ) is closed, using the following matrix representations with

respect to the orthogonal sums X = R(A∗)⊕N(A) and Y = R(W ∗)⊕N(W ):

A =

[
A1 0
A2 0

]
:

[
R(A∗)
N(A)

]
→

[
R(W ∗)
N(W )

]
,

and

W =

[
W1 0
W2 0

]
:

[
R(W ∗)
N(W )

]
→

[
R(A∗)
N(A)

]
,

where E1 = A∗1A1 +A∗2A2 ∈ B(R(A∗)), we obtain

(AW )†,d =

[
(W1E1W

∗
1 )†W1E1W

∗
1A

d,W1

1 W1 0
0 0

]
:

[
R(W ∗)
N(W )

]
→

[
R(W ∗)
N(W )

]
.
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