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OPERATORS ON HILBERT SPACES
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Dedicated to the memory of R. G. Douglas (1938-2018)

Abstract. We define a left quotient as well as a right quotient of two
bounded operators between Hilbert spaces, and we parametrize these two

concepts using the Moore-Penrose inverse. In particular, we show that

the adjoint of a left quotient is a right quotient and conversely. An ex-
plicit formulae for computing left (resp. right) quotient which correspond

to adjoint, sum, and product of given left (resp. right) quotient of two

bounded operators are also shown.

1. Introduction

Let A and B be bounded linear operators on a Hilbert space H with the
kernel condition

N (B) ⊂ N (A).

The quotient operator [A/B] of A and B (not necessary bounded) is de-
fined as the mapping Bx 7−→ Ax, x ∈ H. If we write G(B,A) for the set
{(Bx,Ax) : x ∈ H} in the product Hilbert space H × H, then G(B,A) is a
graph and we can define [A/B] as the operator corresponding to this graph,
see [18]. A quotient (of bounded operators) so defined appeared for the first
time in the work of Dixmier [5] by the name “opérateur J uniforme” and in-
vestigated by Kaufman under the name “semi closed operators” in [17–19],
were several characterizations are given. It is worth noting that this extension
was anticipated well before by Douglas in [4], where he used in the proof of
his famous lemma. In [17] Kaufman showed that a linear operator T on H is
closed if and only if T is represented as a quotient [A/B] using A and B such
that R(A∗) + R(B∗) = {A∗x+B∗y : x; y ∈ H} is closed in H, so that every
closed operator is included in the class of quotients (R(A) denotes the range of
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an operator A). Later, many authors studied this class of operators. We can
mention, for example, the study of algebraic operations, adjoint, weak adjoint
and selfadjoint extension of quotient operators are included in [8, 9, 12, 14, 15],
various topologies on the sets of unbounded linear Hilbert space operators by
means of quotient operators are investigated in [2, 10, 11, 20, 21], and for other
topics we can cite [1,7,13]. Recently, Koliha in [22] extend Kaufman’s results to
operators between two Hilbert spaces H1 and H2 as follows: if A is a bounded
operator from H1 to H2 and B is bounded operator on H1, we can define the
quotient [A/B] as the set G(B,A) = {(Bx,Ax) : x ∈ H1} ⊂ H1 × H2. He
showed that [A/B] is a linear operator from H1 to H2, with domain R(B) and
range R(A) if and only if N (B) ⊂ N (A). For more details see [22].

This paper is a continuation and refinement of the research treatment of
the class of quotient operators. From now, the concept of the left quotient of
bounded operators between two Hilbert spaces (shortly, a left quotient) means
the Douglas solution of a given range operators inclusion. A right quotient
means quotient of bounded operators as defined above. In this work we extend
this two definitions to bounded operators acting between two possibly different
Hilbert spaces. We also collect; unify and generalize earlier work and derive new
or strengthened results, including a complete description of the this two class of
operators in terms of the Moore-Penrose pseudoinverse. We next prove that the
adjoint of a left quotient is always exist and coincide with the right quotient of
the adjoints of this given operators. We present reasonable left quotient which
coincide with the adjoint of a given right quotient. We investigate a conditions
under which the sum and product of two left (resp. right) quotient operators
are also left (resp. right) quotient operators and we show how to compute
the sum and product of given quotients. We also give some other applications
which show the advantage of fractional representations of operators.

2. The left quotient of bounded operators

In what follows H, H1, H2, etc. denote Hilbert spaces endowed with the
appropriate scalar product and the associated norm. The inner product in
H1 ×H2 is defined by 〈(x, y), (x′, y′)〉 = 〈x, x′〉+ 〈y, y′〉. For T linear operator
from H1 to H2, the symbols D(T ) ⊂ H1, N (T ) ⊂ H1 and R(T ) ⊂ H2 will
denote the domain, null space and the range space of T , respectively. The set
G(T ) = {(x, Tx) : x ∈ D(T )} ⊂ H1×H2 is called the graph of T . The operator
T is closed if and only if G(T ) is a closed subset of H1 × H2, and is densely

defined if D(T ) = H1, where D(T ) denote the closure of D(T ) in H1. Denote
by B(H1,H2) the Banach space of all bounded linear operators from H1 to H2.
If H1 = H2, write B(H1,H2) = B(H1).

Before to introduce the left quotient, we need the following theorem, which
is referred to as the Douglas lemma [4]. This lemma is a basic tool for our
discussions.



RIGHT AND LEFT QUOTIENT OF TWO BOUNDED OPERATORS 549

Theorem 2.1 ([4, Theorem 1]). For A ∈ B(H1,H3) and B ∈ B(H2,H3), the
following statements are equivalent:

(1) (range inclusion) R(A) ⊆ R(B);
(2) (majorization) AA∗ ≤ λ2BB∗ for some λ ≥ 0; and
(3) (factorization) there exists a bounded operator C from H1 to H2 such

that A = BC.

Moreover, if one of this conditions ((1), (2) or (3)) holds, then there exists a
unique operator C so that

(a) ‖C‖2 = inf{µ : AA∗ ≤ µBB∗};
(b) N (C) = N (A); and

(c) R(C) ⊆ R(B∗).

We shall call this uniquely determined C the Douglas solution of the equation
BX = A.

As remarked by Fillmore and Williams [6, Remark, p. 259], that the con-
dition (c) is crucial to determine uniquely the operator C, but, in general,
the operator C may be not unique and (a) or (b) is verified, as shown in the
following examples:

Example 2.2. Let

A =

[
0 1
0 0

]
, and B =

[
1 1
0 0

]
.

We have R(A) = R(B) = span{e1}, AA∗ = 1
2BB

∗ and A = BC for

C =

[
α β
−α 1− β

]
for α, β ∈ R.

Now if we assume that the matrix C such that N (C) = N (A) (the condition
(b)), we get α = 0 and A = BC is verified for all C, with

C =

[
0 β
0 1− β

]
for all β ∈ R.

Further, if we added the condition (c), we obtain β = 1
2 ; so

C =

[
0 1

2
0 1

2

]
.

Example 2.3. Let

A =

0 0 1
0 0 0
0 0 0

 and B =

0 0 1
0 1 0
0 0 0

 .
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By a simple calculus, we get R(A) = span{e1} ⊂ R(B) = span{e1, e2}, AA∗ ≤
BB∗ and A = BC for

C =

α β γ
0 0 0
0 0 1

 for all α, β, γ ∈ R.

Now if we assume that the matrix C such that N (C) = N (A) = span{e1, e2}
(the condition (b)), we get α = β = 0 and A = BC is verified for all C, with

C =

0 0 γ
0 0 0
0 0 1

 for all γ ∈ R.

Furthermore; ‖C‖ = 1; at this stage C is not unique. Hence C is uniquely
determined by using the condition (c), witch gives

C =

0 0 0
0 0 0
0 0 1

 .
In view of the observation above, a definition of a left quotient of two oper-

ators can be given as follows:

Definition (Left quotient of bounded operators). Let A ∈ B(H1,H3) and
B ∈ B(H2,H3) such that the range inclusion: R(A) ⊆ R(B) holds. The
unique operator

C : H1 −→ N (B)⊥

as a Douglas solution of A = BX is called left quotient of A by B, and will be
noted by [B\A].

A direct consequence of the Douglas lemma, we have:

(i) [B\A] is bounded operator from H1 to H2, with

‖[B\A]‖ =
√

inf{µ : AA∗ ≤ µBB∗}.
(ii) N ([B\A]) = N (A) and [B\A] from N (A)⊥ to N (B)⊥ is an injective

operator.
(iii) B[B\A]x = Ax for all x ∈ H1 and R(C) = R([B\A]) ⊆ R(B∗). So,

the left quotient [B\A] is the unique solution of the equation A = BX.

Next, in order to give a complete description of the left quotient using the
Moore-Penrose inverse, let recall the definition of this generalized inverse.

Definition ([3]). Let T ∈ B(H1,H2). Then there exists a unique closed densely
defined operator T †, with domain D(T †) = R(T )⊕R(T )⊥ and has the following
properties:

(1) T †Tx = PN (T )⊥x for all x ∈ H1.

(2) TT †y = PR(T )
y for all y ∈ D(T †).

(3) N (T †) = R(T )⊥.
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Where PM denotes the orthogonal projection onto a closed subspace M.

This unique operator T † is called the Moore-Penrose inverse of T (or the
Maximal Tseng generalized Inverse in the terminology of [3]). In this case,
T is written in a matrix form with respect to mutually orthogonal subspaces
decompositions as follows

T =

[
T1 0
0 0

]
:

[
N (T )⊥

N (T )

]
−→

[
R(T )
R(T )⊥

]
with T1 from N (T )⊥ to R(T ) is injective with dense range in R(T ). Hence, its
Moore-Penrose inverse is given by

T † =

[
T−11 0

0 0

]
:

[
R(T )
R(T )⊥

]
−→

[
N (T )⊥

N (T )

]
as a closed operator with domain D(T †) = R(T ) ⊕R(T )⊥ dense in H2. As a
consequence of the closed graph theorem, T † is bounded if and only if R(T ) is
closed in H2, see [3].

In the next result, we redefine the left quotient via the Moore-Penrose in-
verse.

Lemma 2.4. Let A ∈ B(H1,H3) and B ∈ B(H2,H3) such that R(A) ⊆ R(B).
Then

[B\A] = B†A : H1 −→ N (B)⊥.

In particular, if B is invertible, then [B\A] = B−1A.

Proof. Since R(A) ⊆ R(B), B†A is a bounded operator from H1 to H2 as
a composition of closed operator and bounded one (see [16, Problem 5.22,
p. 167]). Further, A and B has the following form

A =

[
A1 0
0 0

]
:

[
N (A)⊥

N (A)

]
−→

[
R(B)
R(B)⊥

]
and

B =

[
B1 0
0 0

]
:

[
N (B)⊥

N (B)

]
−→

[
R(B)
R(B)⊥

]
,

with B1 is an invertible operator from N (B)⊥ to R(B). Moreover,

B† =

[
B−11 0

0 0

]
:

[
R(B)
R(B)⊥

]
−→

[
N (B)⊥

N (B)

]
.

Then

B†A =

[
B−11 A1 0

0 0

]
:

[
N (A)⊥

N (A)

]
−→

[
N (B)⊥

N (B)

]
.

This implies that

(1) BB†A =

[
A1 0
0 0

]
= A :

[
N (B)⊥

N (B)

]
−→

[
R(B)
R(B)⊥

]
.
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On the other hand,

(2) BB†A = PR(B)
Ax = Ax for all x ∈ H1.

By (1) and (2), it follows that BB†A = A with

B†A : H1 −→ N (B)⊥.

Now by the uniqueness of the Douglas solution we have the desired result. �

Remark 2.5. For A ∈ B(H), we have

• [I\A] = A.
• If A is surjective, then [A\I] is the right inverse of A and given by

[A\I] = A† = A∗(AA∗)−1.

Corollary 2.6. Let A ∈ Cn×m and B ∈ Cn×p such that R(A) ⊆ R(B). Then
[B\A] = B†A ∈ Cm×p.

Example 2.7. For the matrices A and B given in Example 2.2 and Example
2.3, the left quotient of A by B is given by

[B\A] = B†A =

[
0 1

2
0 1

2

]
and

[B\A] = B†A =

0 0 0
0 0 0
0 0 1


respectively, where B† is the inverse of Moore-Penrose of the matrix B.

If A ∈ B(H1,H3) and B ∈ B(H2,H3) such that R(A) = R(B), then we can
define [B\A] and [A\B] as follows

[B\A] : H1 −→ N (B)⊥

and

[A\B] : H2 −→ N (A)⊥

with

[B\A][A\B] is the identity operator on N (B)⊥

and

[A\B][B\A] is the identity operator on N (A)⊥.

Therefore, [B\A] is an invertible operator from N (A)⊥ to N (B)⊥ with

[B\A]−1 = [A\B].

Corollary 2.8. Let A ∈ B(H1,H3) and B ∈ B(H2,H3) have the same range.
Then [B\A] is an invertible operator from N (A)⊥ to N (B)⊥ with

[B\A]−1 = [A\B] : N (B)⊥ −→ N (A)⊥

and bounded.
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3. The right quotient of bounded operators

We now present the definition of the second kind of quotient of two bounded
operators in the following generalized form.

Definition (Right quotient of bounded operators). Let A ∈ B(H1,H2) and
B ∈ B(H1,H3) such that the kernel inclusion: N (B) ⊆ N (A) holds. The right
quotient operator [A/B] of A by B is defined as the mapping

Bx 7−→ Ax; x ∈ H1.

A direct consequence of this definition, we have:

(i) If we write G(B,A) for the set {(Bx,Ax) : x ∈ H1} in the product
Hilbert space H3 × H2, then G(B,A) is a graph and we can define
[A/B] as the operator from H3 to H2 corresponding to this graph.

(ii) [A/B]Bx = Ax for all x ∈ H1. So, the right quotient [A/B] is the
unique solution of the equation A = XB.

(iii) D([A/B]) = R(B), R([A/B]) = R(A) and N ([A/B]) = B(N (A)).
(iv) By Douglas lemma, we have R(A∗) ⊂ R(B∗) if and only if ‖Ax‖ ≤

µ ‖Bx‖ for some µ > 0 and all x ∈ H1. Consequently [A/B] is bounded
from R(B) to R(A) if and only if R(A∗) ⊂ R(B∗).

(v) If H1 = H2 = H3, this definition coincides with those given by Kauf-
man, [18].

(vi) If H1 = H3, this definition coincides with those given by Koliha, [22].

As remarked above a right quotient of bounded operators is not necessary
bounded neither closed. The following lemma expresses a right quotient in
terms of the Moore-Penrose inverse.

Lemma 3.1. Let A ∈ B(H1,H2) and B ∈ B(H1,H3) such that N (B) ⊆ N (A).
Then

[A/B] = [APR(B∗)
/B] = AB† : R(B) −→ R(A).

If R(B) is closed, then [A/B] is bounded. In particular, if B is invertible, then
[A/B] = AB−1.

Proof. As in the proof of Lemma 2.4 the Moore-Penrose generalized inverse of
B is given by

B† =

[
B−11 0

0 0

]
:

[
R(B)
R(B)⊥

]
−→

[
N (B)⊥

N (B)

]
.

Since N (B) ⊆ N (A), then

A =

[
A1 0
A2 0

]
:

[
N (B)⊥

N (B)

]
−→

[
R(B)
R(B)⊥

]
.

So

AB† =

[
A1B

−1
1 0

A2B
−1
1 0

]
:

[
R(B)
R(B)⊥

]
−→

[
R(A)
R(A)⊥

]
.



554 M. BENHARRAT

This implies that

(3) AB†B =

[
A1 0
A2 0

]
= A :

[
N (B)⊥

N (B)

]
−→

[
R(A)
R(A)⊥

]
.

On the other hand, for all x ∈ H1 = N (B)⊥ ⊕N (B), we have

(4) AB†Bx = APN (B)⊥x = APN (B)⊥x+APN (B)x = Ax.

By (3) and (4), it follows that [A/B] = [APN (B)⊥/B] = AB† with

AB† : R(B) −→ R(A).

Since D([A/B]) = R(B), it follows that [A/B] is densely defined in R(B) and
is bounded when R(B) is closed. �

Remark 3.2. For A ∈ B(H), we have

• [A/I] = A.
• If A is injective with closed range, then [I/A] is the left inverse of A

and given by [I/A] = A† = (A∗A)−1A∗.

Corollary 3.3. Let A,Cm×n and B ∈ Cp×n such that N (B) ⊆ N (A). Then
[A/B] = AB† ∈ Cp×m.

If A ∈ B(H1,H2), B ∈ B(H1,H3) and N (A) = N (B), then we can define
[B/A] and [A/B] with

[B/A][A/B] is the identity operator on R(B)

and

[A/B][B/A] is the identity operator on R(A).

Therefore, [A/B] is an invertible operator from R(B) to R(A) with

[A/B]−1 = [B/A].

Corollary 3.4. Let A ∈ B(H1,H2), B ∈ B(H1,H3) have the same kernel.
Then [A/B] is an invertible operator from R(B) to R(A) with

[A/B]−1 = [B/A].

If R(A) is closed, then [A/B]−1 is bounded.

The graph of a right quotient operator [A/B] (with the condition N (B) ⊆
N (A)) is the set

G(B,A) = {(Bx,Ax) : x ∈ H1} ⊂ H3 ×H2.

Note that G(B,A) is the range of the operator T defined by:

T =

[
B
A

]
: H1 −→ H3 ×H2.

So its adjoint is given by

T ∗ =
[
B∗ A∗

]
: H3 ×H2 −→ H1.
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We have R(T ) = G(B,A) and R(T ∗) = R(A∗)+R(B∗). Hence [A/B] is closed
if and only ifR(T ) is closed inH3×H2; equivalently toR(T ∗) = R(A∗)+R(B∗)
is closed in H1. This proves the following result.

Lemma 3.5. Let A ∈ B(H1,H2) and B ∈ B(H1,H3) such that N (B) ⊆ N (A).
[A/B] is closed if and only if R(A∗) +R(B∗) is closed in H1.

For A ∈ B(H1,H2) and B ∈ B(H1,H3), let the following selfadjoint operator

RA∗,B∗ = (A∗A+B∗B)1/2 : H1 −→ H1;

It well known that R(RA∗,B∗) = R(A∗) + R(B∗) [6, Theorem 2.2]. Thus

N (RA∗,B∗) = (R(A∗) +R(B∗))
⊥

= N (A)∩N (B). If, further, R(A∗)+R(B∗)

is closed in H1, then R†A∗,B∗ exists and bounded, with

R†A∗,B∗ =

[
R 0
0 0

]
:

[
R(A∗) +R(B∗)
N (A) ∩N (B)

]
−→

[
R(A∗) +R(B∗)
N (A) ∩N (B)

]
,

where R is an isomorphism onR(A∗)+R(B∗). As in [17], we define an operator
J : R(A∗) +R(B∗) −→ H3 ×H2 by

Jx = (BR†A∗,B∗x,AR
†
A∗,B∗x).

Then for each x ∈ R(A∗) +R(B∗),

‖Jx‖2 =
∥∥∥BR†A∗,B∗x∥∥∥2 +

∥∥∥AR†A∗,B∗x∥∥∥2
=
〈
x,R†A∗,B∗R

2
A∗,B∗R

†
A∗,B∗x

〉
= ‖x‖2 .

Hence, if R(A∗) +R(B∗) is closed, then J is a linear isometry from R(A∗) +

R(B∗) toH3×H2. If we assume further, N (B) ⊆ N (A). We have alsoR(A∗) ⊂
R(B∗), this implies that R(A∗)+R(B∗) ⊂ R(B∗). Since N (RA∗,B∗) = N (B);

then R(A∗) +R(B∗) = R(B∗). In this case, since H1 = R(B∗) ⊕ N (B), the
graph of the linear operator [A/B] is given

G(B,A) = {(Bx,Ax) : x ∈ R(B∗) = R(A∗) +R(B∗)},

and hence the linear isometry J maps the closed set R(B∗) onto G(B,A). This
gives another proof of the preceding Lemma.

4. Dual properties

In this section we prove some dual relationships between the left quotient
and the right quotient of two bounded operators.

Let A ∈ B(H1,H3) and B ∈ B(H2,H3). Since R(A) ⊆ R(B) then N (B∗) ⊆
N (A∗), so we can define [A∗/B∗] the right quotient of A∗ by B∗ from R(B∗)
to R(A∗) such that

(5) [A∗/B∗]B∗x = A∗x for all x ∈ H3.
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Since [B\A] is bounded, then its adjoint exists.

Theorem 4.1. Let A ∈ B(H1,H3) and B ∈ B(H2,H3) such that R(A) ⊆
R(B). We have, if R(B∗) is closed, then

[B\A]∗ = [A∗/B∗] = A∗(B∗)†.

Proof. For all x, y ∈ H1,

〈Ax, y〉 = 〈B[B\A]x, y〉
= 〈x, [B\A]∗B∗y〉
= 〈x,A∗y〉 .

Then

[B\A]∗B∗y = A∗y for all y ∈ H3.

Compare this with (5), we obtain [B\A]∗ = [A∗/B∗]. �

Remark 4.2. Without the closure of the range of B∗, as seen in the proof of
the Douglas lemma, the operator [B\A]∗ is the natural extension of [A∗/B∗]
to the closure of the range of B∗; in the following sense.

Since [A∗/B∗] is bounded fromR(B∗) toR(A∗); that is sup{‖A∗x‖ / ‖B∗x‖ :

x ∈ H3, B
∗x 6= 0} < ∞, then we can define its natural extension ˜[A∗/B∗] to

R(B∗) by

˜[A∗/B∗]x =

{
limn→∞[A∗/B∗]xn for x ∈ R(B∗), xn → x,
0 for x ∈ R(B∗)⊥.

It well known that if T is densely defined from H1 to H2, the adjoint T ∗

of T exists, is unique and T ∗ is also defined from H2 to H1. Now, let [A/B]

be a right quotient with the domain R(B), witch is dense in R(B), and let
G(B,A) be its graph. Then the adjoint G(B,A)∗ is naturally defined as the
set of elements (x, y) ∈ H2 × H3 such that 〈Az, x〉 = 〈Bz, y〉 for all z ∈ H1.
We can see that

G(B,A)∗ = {(x, y) : A∗x = B∗y} ⊂ H2 ×H3,

and it is a graph again. The corresponding operator is just the adjoint of [B/A],
that is [B/A]∗. Furthermore, we have

G(B,A)∗ = V(N (T ∗));

with

T ∗ =
[
B∗ A∗

]
: H3 ×H2 −→ H1

and V is the isomorphisms from H3 ×H2 to H2 ×H3 defined by

V(x, y) = (−y, x).

Theorem 4.3. Let A ∈ B(H1,H2) and B ∈ B(H1,H3) such that N (B) ⊆
N (A). For a right quotient [A/B],
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• its adjoint [A/B]∗ exist and closed as an operator from R(A) to R(B)
and

[A/B]∗ = (B†)∗A∗;

witch uniquely extended to an operator from H2 to R(B).
• If R(A∗)+R(B∗) is closed in H1, then [A/B]∗ is closed densely defined

from H2 to R(B).
• If R(B∗) is closed in H1, then

[A/B]∗ = [B∗\A∗] = (B∗)†A∗,

and

[A/B]∗∗ = [A/B].

Proof. Let [A/B] be a right quotient with domain R(B), which is dense in

R(B), then its adjoint [A/B]∗ exist and closed as an operator from R(A) to

R(B) with

D([A/B]∗) = {x ∈ R(A) : ∃y ∈ R(B), 〈[A/B]Az, x〉 = 〈Bz, y〉 ;∀z ∈ H1}

and

[A/B]∗x = y.

By Lemma 3.1 [A/B] = AB†, this implies that [A/B]∗ = (B†)∗A∗. Further,
for all x ∈ D([A/B]∗),

B∗[A/B]∗x = B∗(B†)∗A∗x = (B†B)∗A∗x = PR(B∗)
A∗x = A∗x;

this holds because R(A∗) ⊂ R(B∗). The last equality is also valid if x ∈
N (A∗), so is holds for all x ∈ D([A/B]∗) ⊕ N (A∗) ⊆ H2; this implies that

we can extended [A/B]∗ to a closed operator from H2 to R(B). Further; if
R(A∗) + R(B∗) is closed in H1, then [A/B] is closed densely defined from

R(B) to R(A). So, [A/B]∗ is closed densely defined from H2 to R(B), with

D([A/B]∗) is dense in R(A).
Now if R(B∗) is closed in H1, in that case R(A∗) ⊂ R(B∗), so [A/B] is

bounded and its adjoint [A/B]∗ exist and bounded. Again by Lemma 3.1,

[A/B]∗ = (B†)∗A∗ = (B∗)†A∗ = [B∗\A∗],

and

B∗[B∗\A∗]x = B∗(B∗)†A∗x = PR(B∗)A
∗x = A∗x for all x ∈ H2.

Then

B∗y = A∗x for all x ∈ H2 and y = [B∗\A∗]x ∈ H3.

Hence [A/B]∗ = [B∗\A∗] = (B∗)†A∗ and [A/B]∗∗ = [A/B]. �
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Remark 4.4. Let us point out that Izumino, in [12], construct a right quotient
operator to be an adjoint of [A/B], so our objective is completely different.
Here the adjoint of [A/B] is always exists (in particular, as a left quotient) but
its adjoint in the same nature (as a right quotient) may be not exist, for more
details see [12].

5. Sums and products

Let A, B, C, D ∈ B(H1,H2). Let [B\A] and [D\C] be two left quotient
operators (with the respective range conditions). Then we prove that the sum
of them is also a left quotient operator. To define the denominator of the sum
we need the following range operator, called parallel sum of B∗B and D∗D,
defined by

B∗B : D∗D = B∗B(B∗B +D∗D)†D∗D : H1 −→ H1

with R(B∗) +R(D∗) is closed in H1, see [6, p. 277]. If we denotes

SB∗,D∗ = (B∗B : D∗D)1/2,

then we have, by [6, Theorem 4.2]:

(1) B∗B : D∗D = D∗D : B∗B is positive and bounded.
(2) R(SB∗,D∗) = R(B∗) ∩R(D∗).

This implies that the left operators quotient

B∗1 = [B∗\SB∗,D∗ ] and D∗1 = [D∗\SB∗,D∗ ]

and the right operators quotient

B1 = [SB∗,D∗/B] and D1 = [SB∗,D∗/D]

are always makes sense. Now, for the left quotient form of the sum we have:

Theorem 5.1. Let A, B, C, D ∈ B(H1,H2). Let [B\A] and [D\C] be two
left quotient operators (with the respective range conditions). We have

[B\A] + [D\C] = [SB∗,D∗\(B1A+D1C)] : H1 −→ N (B)⊥ +N (D)⊥.

Proof. If R(A) ⊆ R(B) and R(C) ⊆ R(D), then the operators B1A+D1C is
well-defined from H1 to R(SB∗,D∗). Hence R(B1A + D1C) ⊂ R(SB∗,D∗) and

[SB∗,D∗\B1C +D1A] is also well-defined from H1 to R(SA∗,B∗). Further,

[SB∗,D∗\(B1A+D1C)] = S†B∗,D∗(B1A+D1C).

On the other hand, B1 = SB∗,D∗PR(B∗)
B† and D1 = SB∗,D∗PR(D∗)

D†, so

S†B∗,D∗(B1A+D1C) = S†B∗,D∗(SB∗,D∗PR(B∗)
B†A+ SB∗,D∗PR(D∗)

D†C)

= PR(SB∗,D∗ )
(PR(B∗)

B†A+ PR(D∗)
D†C)

= PR(SB∗,D∗ )
([B\A] + [D\C]).
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On the other hand; it is clear that the sum [B\A]+[D\C] is an operator defined

from H1 to N (B)⊥ +N (D)⊥ = R(SB∗,D∗), which implies that

[B\A] + [D\C] = [SB∗,D∗\B1A+D1C]. �

Remark 5.2. In the case of the scalars case, that is a, b, c, d ∈ C, this Theorem
is nothing,

a

b
+
c

d
=

b1a+ d1c

|b|
(√
|b|2 + |d|2

)−1
|d|
,

with

b1 =

√
|b|2 + |d|2

b |d| |b|
, d1 =

√
|b|2 + |d|2

d |d| |b|
b 6= 0, d 6= 0.

For two left quotient operators with the same denominator, we have:

Theorem 5.3. Let A, B ∈ B(H1,H3) and D ∈ B(H2,H3) such that R(A) ⊆
R(D) and R(B) ⊆ R(D). Then

[D\(A+B)] = [D\A] + [D\B].

Proof. By assumptions, we have A = D[D\A] and B = D[D\B], so

A+B = D([D\A] + [D\B]).

On the other hand; R(A+B) ⊆ R(A)+R(B) ⊆ R(D), it follows that [D\A+B]
is well defined and

A+B = D[D\(A+B)].

By what we assert the desired equality. �

We next show that the product of two left quotient operators is a gain a left
operator.

Theorem 5.4. Let A, B ∈ B(H1,H2) and C, D ∈ B(H1,H3). If [B\A] and
[D\C] are two left quotient operators (with the respective range conditions),
then

[B\A][D\C] = [NB\MC],

where M ∈ B(H3,H1) and N ∈ B(H2,H1) satisfying the conditions MD = NA
and N (N)⊥ = R(B).

To prove this theorem, we need the following lemma.

Lemma 5.5. If T ∈ B(H1,H2) and S ∈ B(H2,H3) with R(T ) = N (S)⊥, then
(ST )† = T †S†.

Proof. In this case we have R(T ) is closed and ST ∈ B(H1,H3) with

(ST )† =

[
R−11 0

0 0

]
:

[
R(ST )
R(ST )⊥

]
−→

[
N (ST )⊥

N (ST )

]
.
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Now, if

T † =

[
T−11 0

0 0

]
:

[
R(T )
R(T )⊥

]
−→

[
N (T )⊥

N (T )

]
and

S† =

[
S−11 0

0 0

]
:

[
R(S)
R(S)⊥

]
−→

[
N (S)⊥

N (S)

]
,

then

T †S† =

[
T−11 S−11 0

0 0

]
:

[
R(S)
R(S)⊥

]
−→

[
N (T )⊥

N (T )

]
;

taking in account that N (S)⊥ = R(T ). We have R(ST ) ⊂ R(S). Now; let
y ∈ R(S) = R(SS∗), so y = SS∗x for x ∈ H3. By assumption R(S∗) =
N (S)⊥ = N (S∗S)⊥ = R(S∗S) = R(T ) = R(TT ∗). Thus S∗x ∈ R(TT ∗)
and S∗x = TT ∗z for z ∈ H3. So y = STT ∗z witch implies that y ∈ R(ST ).
Consequently, R(ST ) = R(S). This proves that (ST )† and T †S† have the
same domain and N ((T †S†)⊥) = N ((ST )†) = R(S)⊥. Let us remark that
TT † = PR(T ) = PN (S)⊥ = SS†. For all y ∈ H3,

T †S†STT †S†y = T †S†SS†SS†y

= T †PR(S†)
S†y

= T †S†y.

Hence T †S†STx = PR(T †S†)
x for all y ∈ H1.

Similarly, for all x ∈ H1,

STT †S†STx = SS†SS†STx

= SPR(S)
Tx

= SPR(ST )
Tx

= STx.

Hence STT †S†z = PR(ST )
z for all z ∈ D(T †S†) = R(S) ⊕R(S)⊥. Hence, by

the uniqueness of Moore-Penrose inverse, (ST )† = T †S†. �

Proof of Theorem 5.4. We have [B\A][D\C] = B†AD†C is an operator well
defined from H1 to N (B)⊥ and the operator [NB\MC] is defined from H1

to N (NB)⊥ ⊂ N (B)⊥. Now, by assumption, MD = NA, so N†MDD† =
N†NAD†; Thus N†MPR(D)

= PN (N)⊥
AD† = PR(B)

AD† = AD† (R(A) ⊂
R(B)). This implies that B†AD†C = B†N†MPR(D)

C = B†N†MC. Now by

Lemma 5.5, B†N† = (NB)†; then

[B\A][D\C] = B†AD†C = (NB)†MC = [NB\MC]. �

Now using Theorem 4.1, we get the following results for the sum and product
for the right quotient operators.
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Theorem 5.6. Let A, B, C, D ∈ B(H1,H2). If [A/B] and [C/D] are two
right quotient operators (with the respective kernel conditions) such that R(B)+
R(D) is closed in H2, then

[A/B] + [C/D] = [AB1 + CD1/SB,D] : R(B) ∩R(D) −→ R(A) ∩R(C),

with
B1 = [B\SB,D] and D1 = [D\SB,D].

Theorem 5.7. Let A, B ∈ B(H1,H2) and D ∈ B(H1,H3) such that N (D) ⊆
N (A) and N (D) ⊆ N (B). Then

[(A+B)/D] = [A/D] + [B/D].

Theorem 5.8. Let A, B ∈ B(H1,H3) and C, D ∈ B(H2,H3). If [A/B] and
[C/D] are two right quotient operators (with the respective kernel conditions),
then

[A/B][C/D] = [APN (B)⊥M/DN ],

where M ∈ B(H3,H1) and N ∈ B(H3,H2) satisfying the conditions BM = CN
and N (D)⊥ = R(N).

Proof. Since the domain of [A/B][C/D] is R(D) and those of [AM/DN ] is
R(DN), as seen in Lemma 5.5, the assumptionN (D)⊥ = R(N) guaranties that
this two operators have the same domain. Now, by assumption, BM = CN , so
B†BMN† = B†CNN†; Thus PN (B)⊥MN† = B†CPN (D)⊥ . This implies that
for y ∈ R(D), we have

[A/B][C/D]y = AB†CD†y = AB†CPN (D)⊥D
†y

= APN (B)⊥MN†D†y

= AMN†D†y

= AM(DN)†y

= [AM/DN ]y.

Here we use the fact that APN (B)⊥ = A because N (B) ⊂ N (A) and (DN)† =

N†D† by Lemma 5.5. �

Remark 5.9. Theorems 5.6 and 5.8 are a generalization of [12, Theorem 3.1]
and [12, Theorem 3.2], respectively.

We finally turn to Lemma 5.5, to give some results like a simplification in a
quotient as in the case of scalars.

Corollary 5.10. Let A ∈ B(H1,H3), B ∈ B(H2,H3) and [B\A] is a left
quotient operator. Then we have

[MB\MA] = [B\A]

for all M ∈ B(H3,H4) such that N (M)⊥ = R(B). In particular, if M ∈
B(H3,H2) and M = B∗, we have

[B∗B\B∗A] = [B\A].
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Proof. We have R(AM) ⊂ R(A) ⊂ R(B) = R(BM); then [MB\MA] is well
defined. Further,

[MB\MA] = (MB)†MA = B†M†MA

= B†PN (M)⊥A = B†PR(B)A = B†A = [B\A]. �

Corollary 5.11. Let A ∈ B(H1,H2), B ∈ B(H1,H3) and [A/B] is a right
quotient operator. Then we have

[AM/BM ] = [A/B]

for all M ∈ B(H4,H1) such that N (B)⊥ = R(M). In particular, if M ∈
B(H3,H1) and M = B∗, we have

[AB∗/BB∗] = [A/B].

Proof. Since N (B)⊥ = R(M) and N (B) ⊂ N (A); then N (BM) ⊂ N (AM);
then [AM/BM ] is well defined. Further,

[AM/BM ] = AM(BM)† = AMM†B†

= APR(M)B
† = APN (B)⊥B

† = AB† = [A/B]. �

Corollary 5.12. Let A ∈ B(H1,H2) with closed range. Then we have

A = [A∗\A∗A] and A† = [A∗A\A∗].
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