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Abstract. Necessary and sufficient conditions are provided under which

the weighted Moore–Penrose inverse A†MN exists, where A is an ad-

jointable operator between Hilbert C∗-modules, and the weights M and

N are only self-adjoint and invertible. Relationship between weighted

Moore–Penrose inverses A†MN is clarified when A is fixed, whereas M and

N are variable. Perturbation analysis for the weighted Moore–Penrose in-

verse is also provided.

1. Introduction and preliminaries

During the past decades, the weighted Moore–Penrose inverse (In brief,
weighted M-P inverse) and its various applications have been intensely stud-
ied. When the weights M and N are both positive definite, the study of the

weighted M-P inverse A†MN can be found in [3,9–11,15] for matrices, in [12] for
Hilbert space operators, in [1, 8] for elements in a C∗-algebra or in a Banach
algebra, and in [13] for Hilbert C∗-module operators, respectively.

Some new phenomena may happen if the weights M and N are not positive
definite (positive and invertible), since in this case the weighted spaces induced
by M and N are usually indefinite. Along this direction, the weighted M-P

inverse A†MN was generalized in [2] for Hilbert space operators to the case when
M and N are only positive semi-definite, and in [4] for matrices when M and
N are only Hermitian and nonsingular.

Before stating our results, let us recall some basic facts about Hilbert C∗-
modules and introduce our notation; more details can be found e.g. in [6, 7].

An inner product module over a C∗-algebra A is a (right) A-module H
equipped with an A-valued inner product 〈·, ·〉, which is C-linear and A-linear
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in the second variable and has the properties 〈x, y〉∗ = 〈y, x〉 as well as 〈x, x〉 ≥ 0
with equality if and only if x = 0. H is called a (right) Hilbert A-module if it

is complete with respect to the norm ‖x‖ = ‖〈x, x〉‖
1
2 .

Suppose that H and K are two Hilbert A-modules, let L(H,K) be the set
of operators T : H → K for which there is an operator T ∗ : K → H such that

〈Tx, y〉 = 〈x, T ∗y〉 for every x ∈ H and y ∈ K.

It is known that (see, e.g., [6, p. 8]) every element T ∈ L(H,K) must be a
bounded linear operator, which is also A-linear. We call L(H,K) the set of
adjointable operators from H to K. Note that some bounded linear operators
between Hilbert C∗-modules cannot be adjointable (see [6, p. 8]).

For each T ∈ L(H,K), the range and the null space of T are denoted by
R(T ) and N (T ), respectively. In case H = K, L(H,H) which is abbreviated
to L(H), is a C∗-algebra. Let L(H)+ be the set of positive elements in L(H).
The notation T ≥ 0 is also used to indicate that T is an element of L(H)+.

Let H be a Hilbert A-module. If H1 and H2 are submodules of H such that
H1 ∩H2 = {0}, then their direct sum is defined by

H1 uH2 = {h1 + h2 : hi ∈ Hi, i = 1, 2} ⊆ H.

Given a subset M of H, let M⊥ =
{
x ∈ H : 〈x, y〉 = 0 for every y ∈ M

}
. In

the special case that M is a closed submodule of H and H = M uM⊥, M is
said to be orthogonally complemented in H.

Although Hilbert C∗-modules generalize Hilbert spaces by allowing inner
products to take values in a certain C∗-algebra instead of the C∗-algebra of
complex numbers, some fundamental properties of Hilbert spaces are no longer
valid in Hilbert C∗-modules in their full generality. Therefore, when we are
studying Hilbert C∗-modules, it is always of interest under which conditions
the results analogous to those for Hilbert spaces can be reobtained, as well as
which more general situations might appear.

In this paper, inspired by [4], we focus on the case that the weights are only
self-adjoint and invertible, and study the weighted M-P inverse in the general
setting of adjointable operators on Hilbert C∗-modules.

The paper is organized as follows. In Section 2 the existence and the unique-
ness of the weighted M-P inverse are investigated. In the case when A is an
adjointable operator and the weights M,N are only self-adjoint and invertible,
some necessary and sufficient conditions are provided in Theorem 2.4 under

which the weighted M-P inverse A†MN exists. Consequently, a generalization of
both [4, Theorem 1] and [13, Theorem 1.3] is obtained. Two examples are also
provided in Section 2 to illustrate certain new phenomena. In the case when

A is fixed, the relationship between weighted M-P inverses A†MN for variable
weights M and N is clarified in Section 3. Results obtained in [13, Section 2]
and [15, Section 2] are then generalized, since all the weights considered in [13]
and [15] are positive definite, whereas in Section 3 of this paper they are only
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needed to be self-adjoint and invertible. Finally, we study the perturbation
analysis for the weighted Moore–Penrose inverse.

Throughout the rest of this paper, Cm×n is the set ofm×n complex matrices,
In is the identity matrix in Cn×n, A is a C∗-algebra, H and K are Hilbert A-
modules, IH (or simply I) is the identity operator on H.

2. Conditions of the existence of the weighted M-P inverse

The purpose of this section is, in the general setting of self-adjoint and
invertible weights, to figure out necessary and sufficient conditions under which
the weighted M-P inverse exists.

Lemma 2.1 (cf. [6, Theorem 3.2] and [14, Remark 1.1]). Let A ∈ L(H,K).
Then the closedness of any one of the following sets implies the closedness of
the remaining three sets:

R(A), R(A∗), R(AA∗) and R(A∗A).

Furthermore, if R(A) is closed, then R(A) = R(AA∗), R(A∗) = R(A∗A) and
the following orthogonal decompositions are valid:

H = N (A)uR(A∗) and K = R(A)uN (A∗).

Definition. An element M of L(K) is said to be a weight if M = M∗ and
M is invertible in L(K). If furthermore M is positive, then M is said to be
positive definite.

Definition. Let M ∈ L(K) be a weight. The indefinite inner-product on K
induced by M is given by

〈x, y〉M = 〈x,My〉 for every x, y ∈ K.

Lemma 2.2 (cf. [13, Remark 1.1]). Let M ∈ L(K) and N ∈ L(H) be two
weights. Then for each T ∈ L(H,K), it has

〈Tx, y〉M = 〈x, T#y〉N for every x ∈ H and y ∈ K,

where T# is called the weighted adjoint operator of T and is given by

(1) T# = N−1T ∗M ∈ L(K,H).

Definition. Let M ∈ L(K) and N ∈ L(H) be weights and A ∈ L(H,K). The

weighted M-P inverse A†MN (if it exists) is the element X of L(K,H) which
satisfies

(2) AXA = A, XAX = X, (MAX)∗ = MAX and (NXA)∗ = NXA.

If M = IK and N = IH , then A†MN is denoted simply by A† and is called the
M-P inverse of A.

The following lemma indicates that the weighted M-P inverse is unique
whenever it exists.
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Lemma 2.3. Let M ∈ L(K) and N ∈ L(H) be weights, and A ∈ L(H,K). If

A†MN exists, then it is unique.

Proof. Put P = AA†MN and Q = A†MNA. Then from (2) and Lemma 2.2, both
P and Q are idempotent such that

R(P ) = R(A), P# = P and Q# = Q.

If (2) is satisfied for any X ∈ L(K,H), then both P ′ = AX and Q′ = XA are
also idempotent such that

R(P ′) = R(A), (P ′)# = P ′ and (Q′)# = Q′.

It follows that R(P ) = R(P ′), hence PP ′ = P ′ and P ′P = P , which yield

P = P# = (P ′P )# = P#(P ′)# = PP ′ = P ′.

In addition, we have

R(Q) = R(Q#) = R
(
A#(A†MN )#

)
= R(A#) = R(A#X#) = R(Q′),

which leads to Q = Q′ as illustrated before. Therefore,

A†MN = A†MNP = A†MNP
′ = QX = Q′X = X. �

Now we present the main result of this section as follows:

Theorem 2.4. Let M ∈ L(K) and N ∈ L(H) be weights, and A ∈ L(H,K).

Then A†MN exists if and only if the following conditions are all satisfied:

(i) R(A) is closed;
(ii) R(AN−1A∗) = R(A);

(iii) R(A∗MA) = R(A∗).

Proof. “=⇒”: For simplicity, we put X = A†MN . Then R(A) = R(AX) is
closed. Also, since XA is idempotent, H can be decomposed directly as H =
R(XA) uN (XA), which leads furthermore to the direct decomposition of H
as

(3) H = R(N−1A∗)uN (A).

Indeed, the equalities of N (XA) = N (A) and R(A∗X∗) = R(A∗) can be
derived clearly from the first equation in (2). We can then use the last equation
in (2) together with the invertibility of N to conclude that

R(XA) = R(N−1A∗X∗N) = R
(
N−1(A∗X∗)

)
= R(N−1A∗).

It follows directly from (3) that R(A) ⊆ R(AN−1A∗), which can happen only
if R(A) = R(AN−1A∗). The proof of R(A∗MA) = R(A∗) is similar.

“⇐=”: Suppose that conditions (i)–(iii) are all satisfied. In what follows,
we construct an operator X ∈ L(K,H) which satisfies (2).

Firstly, we provide the direct decompositions of K and H, respectively.
Given every x ∈ K, by item (iii) we have A∗Mx = A∗MAu for some u ∈ H,
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then x−Au ∈ N (A∗M), therefore x = Au+ (x−Au) ∈ R(A) +N (A∗M). By
the arbitrariness of x in K, we have

(4) K = R(A) +N (A∗M).

Furthermore, given every w ∈ R(A) ∩ N (A∗M), we have A∗Mw = 0 and
w = Av for some v ∈ H, hence v ∈ N (A∗MA). By item (i) and Lemma 2.1,
we know that R(A∗) is also closed such that R(A∗)⊥ = N (A). So R(A∗MA)
is also closed by item (iii), hence by Lemma 2.1 once again we have

v ∈ N (A∗MA) = R(A∗MA)⊥ = R(A∗)⊥ = N (A),

which gives w = Av = 0. This shows that R(A)∩N (A∗M) = {0}. Hence from
(4) and item (ii), K can be decomposed directly as

(5) K = R(AN−1A∗)uN (A∗M).

Similarly, H can be decomposed directly as

(6) H = R(N−1A∗MA)uN (A).

Secondly, we construct two operators X and Y based on the obtained direct
decompositions. Let X : K → H be given by

(7) X(AN−1A∗u1 + u2) = N−1A∗u1 for every u1 ∈ K,u2 ∈ N (A∗M).

In view of (5) and

N (AN−1A∗) = R(AN−1A∗)⊥ = R(A)⊥ = N (A∗) = N (N−1A∗),

we know that X is well-defined. It follows from (7) and (1) that

(8) R(X) = R(N−1A∗) = R(A#) and N (X) = N (A∗M) = N (A#).

Similarly, the operator Y : H → K defined by

(9) Y (N−1A∗MAv1 + v2) = Av1 for every v1 ∈ H, v2 ∈ N (A)

is also well-defined such that

R(Y ) = R(A) and N (Y ) = N (A).

Thirdly, we show that the constructed operator X is adjointable. To this
end, we show that

〈Xu, v〉N = 〈u, Y v〉M for every u ∈ K and v ∈ H.
In fact, for u ∈ K and v ∈ H, according to (5) and (6) we know that

(10) u = AN−1A∗u1 + u2 and v = N−1A∗MAv1 + v2

for some u1 ∈ K, u2 ∈ N (A∗M), v1 ∈ H and v2 ∈ N (A). Therefore, from (7)
and (9) we have

〈Xu, v〉N = 〈N−1A∗u1, N−1A∗MAv1 + v2〉N
= 〈N−1A∗u1, A∗MAv1 +Nv2〉
= 〈N−1A∗u1, A∗MAv1〉+ 〈u1, Av2〉
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= 〈MAN−1A∗u1, Av1〉
= 〈MAN−1A∗u1, Av1〉+ 〈A∗Mu2, v1〉
= 〈MAN−1A∗u1 +Mu2, Av1〉
= 〈AN−1A∗u1 + u2, Av1〉M
= 〈u, Y v〉M .

Now, we put

(11) X∗ := MYN−1.

Note that R(N) = H and for every u ∈ K and v ∈ H, by (11), we have

〈Xu,Nv〉 = 〈Xu, v〉N = 〈u, Y v〉M = 〈u,MY N−1Nv〉 = 〈u,X∗Nv〉,

which shows that X∗ is the adjoint operator of X.

Finally, we prove that X is exactly the weighted M-P inverse A†MN . Note
that every v ∈ H can be decomposed as (10) such that v1 ∈ H and v2 ∈ N (A),
so by (7), (11) and (9) we have

AXAv = AX(AN−1A∗MAv1) = A(N−1A∗MAv1) = Av

and

(NXA)∗v = A∗MY v = A∗MAv1 = NN−1A∗MAv1 = NXAv.

This completes the proof that AXA = A and (NXA)∗ = NXA.
Let u ∈ K be any given by (10) such that u1 ∈ K and u2 ∈ N (A∗M). Then

since u2 ∈ N (A∗M), we have

(12) A∗Mu = A∗MAN−1A∗u1.

Similarly, from (7), (11), (12) and (9) we can obtain

Xu = N−1A∗u1 = XA(N−1A∗u1) = XAXu

and

(MAX)∗u = MYN−1A∗MAN−1A∗u1 = MAN−1A∗u1 = MAXu.

This completes the proof that XAX = X and (MAX)∗ = MAX. �

Remark 2.5. Let M ∈ L(K) and N ∈ L(H) be weights, and A ∈ L(H,K) be

given such that A†MN exists. We can see from (8) that

R(A†MN ) = R(N−1A∗) = R(A#)

and

(13) N (A†MN ) = N (A∗M) = N (A#).

Moreover, items (ii) and (iii) in Theorem 2.4 can be rephrased as

(14) R(AA#) = R(A) and R(A#A) = R(A#).
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Indeed, R(AN−1A∗) = R(AN−1A∗M) = R(AA#), and

R(A∗MA) = R(A∗)⇐⇒R(N−1A∗MA) = R(N−1A∗M)

⇐⇒R(A#A) = R(A#).

If both H and K are finite-dimensional spaces, then R(A) is always closed and
rank(A#) = rank(A), so (14) can be reduced to

(15) rank(AA#) = rank(A#A) = rank(A).

In view of the observation above, we have the following corollary.

Corollary 2.6 ([4, Theorem 1]). Let M ∈ Cm×m and N ∈ Cn×n be weights,

and A ∈ Cm×n. Then A†MN exists if and only if (15) is satisfied.

Theorem 2.4 can also be simplified in the infinite-dimensional case if the
weights M and N are both positive definite.

Corollary 2.7 ([13, Theorem 1.3]). Let M ∈ L(K) and N ∈ L(H) be both

positive definite. Then for every A ∈ L(H,K), A†MN exists if and only if R(A)
is closed.

Proof. It needs only to prove the sufficiency. Let T = AN−
1
2 . It is clear

that AN−1A∗ = TT ∗ and R(T ) = R(A), which means by Lemma 2.1 that
R(AN−1A∗) is closed whenever R(A) is closed. Similarly,

R(A∗MA) is closed⇐⇒ R(A∗) is closed⇐⇒ R(A) is closed. �

Another special case of Theorem 2.4 is as follows.

Corollary 2.8. Let M ∈ L(K) and N ∈ L(H) be weights, and A ∈ L(H,K).

If both M and N commute with A, then A†MN exists if and only if R(A) is
closed.

Proof. Since both M and N commute with A, we have

R(AN−1A∗) = R(AA∗N−1) = R(AA∗)

and

R(A∗MA) = R(A∗AM) = R(A∗A).

So if R(A) is closed, then items (ii) and (iii) of Theorem 2.4 will be satisfied
by Lemma 2.1. �

There exists a weighted M-P inverse A†MN such that neither M nor N is
positive definite, and also neither M nor N commutes with A. Such an example
in the infinite-dimensional case is as follows:

Example 2.9. Let S be the unilateral shift on the Hilbert space `2(N), that
is, Sen = en+1 for every n ∈ N, where {en : n ∈ N} is the orthonormal basis
of `2(N). Put A = C, H = K = `2(N) and A = S. Then A∗A = I and
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AA∗ = I − P1 is a diagonal operator, where P1 is the projection from H onto
its linear subspace spanned by e1. In particular, R(A) is closed.

Given positive numbers c1, c2, d1 and d2, and two sequences {an} and {bn}
taken in the real line such that

c1 ≤ |an| ≤ d1 and c2 ≤ |bn| ≤ d2 for every n ∈ N,

let M,N ∈ L(H) be diagonal operators determined by

Men = anen and Nen = bnen for every n ∈ N.

Then both M and N are self-adjoint and invertible, whereas M fails to be
positive if there exists n0 ∈ N such that an0

< 0. The same is true for N .
Since A∗A = I, it is obvious that

AA∗A = A, A∗AA∗ = A∗ and (NA∗A)∗ = NA∗A.

Also, we have (MAA∗)∗ = MAA∗, since both M and AA∗ are diagonal and

self-adjoint. Therefore, by (2) we know that A†MN = A∗.

Remark 2.10. Let A ∈ L(H,K) be given such that R(A) is closed. Put

W (A) =
{
M ∈ L(K) : M is a weight such that R(A∗MA) = R(A∗)

}
.

Clearly, a weight M in L(K) is a member of W (A) if and only if R(A∗MA) is
closed and A∗MA(A∗MA)† = A∗(A∗)†. Assume that {Mn} is a sequence taken
in W (A) such that Mn → M as n → +∞. Then obviously, M is self-adjoint
and A∗MnA → A∗MA. If M is also invertible and R(A∗MA) is closed, then
since

A∗MnA(A∗MnA)† = A∗(A∗)† for every n ∈ N,

we know from [5, Theorem 1.6] that

M ∈W (A)⇐⇒A∗MA(A∗MA)† = A∗(A∗)†

⇐⇒ lim
n→∞

A∗MnA(A∗MnA)† = A∗MA(A∗MA)†

⇐⇒ sup
{∥∥(A∗MnA)†

∥∥ : n ∈ N
}
< +∞.(16)

An example can be constructed as follows, in which (16) is not satisfied.

Example 2.11. Let A = ( 1 0
0 0 ), M = ( 0 2

2 0 ), N = I2 and put

Mn =

(
1
n 2
2 1

n

)
and Nn = I2 for every n ∈ N.

Then R(AN−1n A∗) = R(A) and R(A∗MnA) = R(A∗) = C ⊕ {0}, therefore

A†MnNn
exists for each n ∈ N, whereas A†MN does not exist, since the supremum

in (16) turns out to be +∞.
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3. The relationship between weighted M-P inverses

Unless otherwise specified, in this section A ∈ L(H,K) is fixed such that
R(A) is closed, M,M1,M2 ∈ L(K) and N,N1, N2 ∈ L(H) are weights such
that all the weighted M-P inverses exist.

We begin with an auxiliary lemma as follows:

Lemma 3.1. Let P,Q ∈ L(H) be two idempotents. Then P = Q whenever
R(Q) ⊆ R(P ) and N (Q) ⊆ N (P ).

Proof. Suppose that R(Q) ⊆ R(P ) and N (Q) ⊆ N (P ). Then PQ = Q since
R(Q) ⊆ R(P ), and P (I −Q) = 0 since R(I −Q) = N (Q) ⊆ N (P ). Therefore,
0 = P (I −Q) = P − PQ = P −Q, and hence P = Q. �

To clarify the relationship between weighted M-P inverses, we need two
lemmas:

Lemma 3.2. The following equations for the weighted M-P inverse are valid:

AA†MN1
= AA†MN2

and A†M1N
A = A†M2N

A.

Proof. Clearly, R(AA†MN1
) = R(A) = R(AA†MN2

), and by (13) we have

N (AA†MN1
) = N (A†MN1

) = N (A∗M) = N (A†MN2
) = N (AA†MN2

).

By Lemma 3.1 we can obtain AA†MN1
= AA†MN2

, since both of them are

idempotents. Similarly, it can be shown that A†M1N
A = A†M2N

A. �

Lemma 3.3. The following equations for the weighted M-P inverse are valid:

(I −A†MN1
A)N−11 N2A

†
MN2

A = 0,(17)

AA†M2N
M−12 M1(I −AA†M1N

) = 0.(18)

Proof. Let Ω = A†MN1
AN−11 N2A

†
MN2

A. By (2) we have

N2A
†
MN2

A = (A†MN2
A)∗N2 and A†MN1

AN−11 = N−11 (A†MN1
A)∗,

which lead to

Ω = N−11 (A†MN1
A)∗(A†MN2

A)∗N2

= N−11

(
A†MN2

(AA†MN1
A)
)∗
N2

= N−11 (A†MN2
A)∗N2

= N−11 N2A
†
MN2

A.

This completes the proof of (17). The proof of (18) is similar. �

The relationship between A†MN1
and A†MN2

can be described as follows.
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Theorem 3.4. The following equation for the weighted M-P inverse is valid:

A†MN1
= RM ;N1,N2 ·A

†
MN2

,

where

(19) RM ;N1,N2
= A†MN1

A+ (I −A†MN1
A)N−11 N2.

Furthermore, RM ;N1,N2
is invertible in L(H) if and only if

(20) R
(

(I −A†MN1
A)∗N2(I −A†MN1

A)
)

= R
(
(I −A†MN1

A)∗
)
.

Proof. It follows from (19) and (17) that

RM ;N1,N2
·A†MN2

A = A†MN1
(AA†MN2

A) = A†MN1
A,

which is combined with Lemma 3.2 to conclude that

RM ;N1,N2 ·A
†
MN2

= RM ;N1,N2 ·A
†
MN2

AA†MN2

= RM ;N1,N2
·A†MN2

AA†MN1

= A†MN1
AA†MN1

= A†MN1
.

Let P = A†MN1
A, H1 = R(P ) and H2 = R(I−P ). Then P is an idempotent

and H = H1 uH2. Hence RM ;N1,N2
can be partitioned as

RM ;N1,N2 =

(
H1

H2

)(
IH1

0
R21 R22

)(
H1

H2

)
,

where

(21) R22 = (I − P )N−11 N2(I − P )
∣∣
H2

and
R21 = (I − P )N−11 N2P

∣∣
H1
.

It follows that

RM ;N1,N2 ∈ L(H) is invertible⇐⇒ R22 : H2 → H2 is a bijection.

In addition, by (2) we have N1PN
−1
1 = P ∗ and thus

R
(
N1(I − P )

)
= R

(
N1(I − P )N−11

)
= R

(
(I − P )∗

)
,

which means by the invertibility of N1 that the morphism N1|H2
: H2 →

R
(
(I−P )∗

)
is a bijection. Therefore, R22 is a bijection if and only if N1|H2 ·R22

is a bijection. Since R(R22) ⊆ H2, we know from (21) that

N1|H2 ·R22 = N1R22 = (I − P )∗N2(I − P )
∣∣
H2
.

It follows that R22 : H2 → H2 is a bijection if and only if

(22) T
def
= (I − P )∗N2(I − P )

∣∣
H2

: H2 → R
(
(I − P )∗

)
is a bijection.

Suppose that (22) is satisfied. Then (20) is valid, since it is obvious that

R
(
(I − P )∗N2(I − P )

)
= R

(
(I − P )∗N2(I − P )

∣∣
H2

)
.
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Conversely, if (20) holds, then the operator T defined by (22) is surjective. Note
that (I −P )∗ is an idempotent, so R

(
(I −P )∗

)
is closed, therefore Lemma 2.1

and (20) yield

N (I−P ) = R
(
(I−P )∗

)⊥
= R

(
(I−P )∗N2(I−P )

)⊥
= N

(
(I−P )∗N2(I−P )

)
,

which clearly leads to the injectivity of T . �

The relationship between A†M1N
and A†M2N

can be described as follows.

Theorem 3.5. The following equation for the weighted M-P inverse is valid:

A†M1N
= A†M2N

· LM1,M2;N ,

where

(23) LM1,M2;N = AA†M1N
+M−12 M1(I −AA†M1N

),

which is invertible in L(H) if and only if

(24) R
(

(I −AA†M1N
)∗ ·M1M

−1
2 M1 · (I −AA†M1N

)
)

= R
(
(I −AA†M1N

)∗
)
.

Proof. Note that A†M2N
= A†M2N

AA†M2N
, so from (18) we have

A†M2N
M−12 M1(I −AA†M1N

) = 0.

The equation above, together with (23) and Lemma 3.2, yields

A†M2N
· LM1,M2;N = (A†M2N

A)A†M1N
= (A†M1N

A)A†M1N
= A†M1N

.

As in the proof of Theorem 3.4, it can be shown that LM1,M2;N is invertible in
L(H) if and only if (24) is satisfied. �

Based on Theorems 3.4 and 3.5, we can obtain the following result.

Corollary 3.6. The following equation for the weighted M-P inverse is valid:

(25) A†M1N1
= RM2;N1,N2

·A†M2N2
· LM1,M2;N2

,

where RM1;N1,N2
and LM1,M2;N1

are defined by (19) and (23), respectively.

Proof. By (19), (23) and Lemma 3.2, we have

RM1;N1,N2
= RM2;N1,N2

and LM1,M2;N1
= LM1,M2;N2

.

Thus we can apply Lemmas 3.4 and 3.5 to get

A†M1N1
= RM1;N1,N2

·A†M1N2
= RM1;N1,N2

·A†M2N2
· LM1,M2;N2

= RM2;N1,N2 ·A
†
M2N2

· LM1,M2;N2 . �

Remark 3.7. Suppose that M2 ∈ L(K) and N2 ∈ L(H) are both positive
definite. Let

P = A†MN1
A, T = (I−P )∗N

1
2
2 , Q = AA†M1N

and S = (I−Q)∗M1M
− 1

2
2 .
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Then by Lemma 2.1, we have

R
(

(I − P )∗N2(I − P )
)

= R(TT ∗) = R(T ) = R
(
(I − P )∗

)
and

R
(

(I −Q)∗M1M
−1
2 M1(I −Q)

)
= R(SS∗) = R(S) = R

(
(I −Q)∗

)
.

Thus, by Theorems 3.4 and 3.5 we know that both RM ;N1,N2 and LM1,M2;N

are invertible in L(H).

Remark 3.8. There certainly exist M,M1,M2 ∈ L(K) and N,N1, N2 ∈ L(H)
such that neither RM ;N1,N2 nor LM1,M2;N is invertible. Such an example is as
follows.

Example 3.9. Let A =
(
1 −1
1 −1

)
,M = N = I2,M1 = N1 = ( 0 1

1 0 ), M2 = N2 =(
1 0
0 −1

)
. It is easy to verify that both A†MN1

and A†M1N
are equal to

(
1
4

1
4

− 1
4 −

1
4

)
.

So according to (19) and (23), we have

RM ;N1,N2
=

(
1 −1
0 0

)
and LM1,M2;N =

(
0 1
0 1

)
,

both of which are singular.

In the above presentation, it is assumed that all the weighted M-P inverses
exist. In view of Theorems 3.4 and 3.5, a slight generalization can be made as
follows.

Theorem 3.10. Let M ∈ L(K) and N1, N2 ∈ L(H) be weights. If A ∈
L(H,K) is given such that A†MN1

exists and the operator RM ;N1,N2
defined by

(19) is invertible, then A†MN2
exists and is of the form

A†MN2
= R−1M ;N1,N2

·A†MN1
.

Proof. Let X = R−1M ;N1,N2
·A†MN1

. Then X is adjointable, since both R−1M ;N1,N2

and A†MN1
are adjointable. It follows from (19) that ARM ;N1,N2 = A, hence

AR−1M ;N1,N2
= A, which gives directly AXA = A, XAX = X and MAX =

MAA†MN1
, therefore (MAX)∗ = MAX. Furthermore, by (19) and (2), we

have

N1RM ;N1,N2 = N1A
†
MN1

A+N1(I −A†MN1
A)N−11 N2,

(N1RM ;N1,N2
)∗ = N1A

†
MN1

A+N2(I −A†MN1
A),

which lead to

(N1RM ;N1,N2
)N−12 N1A

†
MN1

A = N1A
†
MN1

AN−12 N1A
†
MN1

A

= N1A
†
MN1

AN−12 (N1RM ;N1,N2)∗.
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It follows that

N−12 N1A
†
MN1

A ·
(
(N1RM ;N1,N2

)−1
)∗

= (N1RM ;N1,N2
)−1 ·N1A

†
MN1

AN−12

= R−1M ;N1,N2
·A†MN1

AN−12 ,

and thus

(N1A
†
MN1

A)∗ ·
(
(N1RM ;N1,N2)−1

)∗
N∗2 = N2R

−1
M ;N1,N2

A†MN1
A,

which can obviously be simplified to (N2XA)∗ = N2XA. �

Similarly, we have the following result.

Theorem 3.11. Let M1,M2 ∈ L(K) and N ∈ L(H) be weights. If A ∈
L(H,K) is given such that A†M1N

exists and the operator LM1,M2;N defined by

(23) is invertible, then A†M2N
exists and is of the form

A†M2N
= A†M1N

· L−1M1,M2;N
.

Proof. The proof is so similar to that of Theorem 3.10 that we omit it. �

We finish this section by applying our results to obtain norm estimations for
the weighted M–P inverse. In the sequel, M ∈ L(K) and N ∈ L(H) are two

weights, and A ∈ L(H,K) is given such that A†MN exists. By (2) both M(I −
AA†MN ) ∈ L(K) and (I − A†MNA)N−1 ∈ L(H) are self-adjoint, which mean

that r1 and r2 are the spectral radii of M(I − AA†MN ) and (I − A†MNA)N−1

respectively, where

r1 =
∥∥M(I −AA†MN )

∥∥ and r2 =
∥∥(I −A†MNA)N−1

∥∥.
Now let δM−1 ∈ L(K) and δN ∈ L(H) be self-adjoint such that

(26) ‖δM−1‖ ·max{‖M‖, r1} < 1 and ‖δN‖ ·max{‖N−1‖, r2} < 1.

Under the above conditions, two weights M̂ and N̂ can be induced as

(27) M̂ = ((M)−1 + δM−1)−1 and N̂ = N + δN .

By (19), (27) and Lemma 3.2, we have

(28) RM ;N,N̂ = A†MNA+ (I −A†MNA)N−1N̂ = I + (I −A†MNA)N−1δN ,

which is invertible since by assumption we have

(29) ‖(I −A†MNA)N−1δN‖ ≤ ‖(I −A†MNA)N−1‖ · ‖δN‖ = r2 · ‖δN‖ < 1.

It follows from Theorem 3.10 that A†
MN̂

exists. Similarly,

L
M,M̂ ;N

= AA†MN + M̂−1M(I −AA†MN )

= I + δM−1M(I −AA†MN )(30)

= I + δM−1M(I −AA†
MN̂

) = L
M,M̂ ;N̂

,
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which is also invertible since by assumption we have

‖δM−1M(I −AA†MN )‖ ≤ ‖δM−1‖ · ‖M(I −AA†MN )‖ = r1 · ‖δM−1‖ < 1.

Therefore, by the existence of A†
MN̂

and the invertibility of L
M,M̂ ;N̂

we can

conclude from Theorem 3.11 that A†
M̂N̂

is also existent. Furthermore, we may

combine (28) and (29) to conclude that∥∥∥R−1
M ;N,N̂

∥∥∥ ≤ 1

1− r2‖δN‖
(31)

and ∥∥∥I −R−1
M ;N,N̂

∥∥∥ ≤ r2‖δN‖
1− r2‖δN‖

.(32)

Similarly, we can obtain ∥∥∥L−1
M,M̂ ;N

∥∥∥ ≤ 1

1− r1‖δM−1‖
(33)

and ∥∥∥I − L−1
M,M̂ ;N

∥∥∥ ≤ r1‖δ−1M ‖
1− r1‖δM−1‖

.(34)

Based on the above observations, we have the following theorem.

Theorem 3.12. Let δM−1 ∈ L(K) and δN ∈ L(H) be self-adjoint such that
(26) is satisfied. Then

(i)
∥∥A†

M̂N̂

∥∥ ≤ ‖A†MN‖
(1−r1‖δM−1‖)·(1−r2‖δN‖) ;

(ii)
∥∥A†

M̂N̂
−A†MN

∥∥ ≤ r1‖δM−1‖+r2‖δN‖−r1r2‖δM−1‖ ‖δN‖
(1−r1‖δM−1‖)·(1−r2‖δN‖) ‖A†MN‖;

(iii)
∥∥A†

M̂N̂
A−A†MNA

∥∥ ≤ r2‖δN‖
1−r2‖δN‖ ‖A

†
MNA‖;

(iv)
∥∥AA†

M̂N̂
−AA†MN

∥∥ ≤ r1‖δM−1‖
1−r1‖δM−1‖ ‖AA

†
MN‖.

Proof. By Corollary 3.6 we have

(35) A†
M̂N̂

= R−1
M̂ ;N,N̂

·A†MN · L
−1
M,M̂ ;N̂

= R−1
M ;N,N̂

·A†MN · L
−1
M,M̂ ;N

,

so

(36) A†
M̂N̂
−A†MN =

(
R−1
M ;N,N̂

− I
)
A†MNL

−1
M,M̂ ;N

+A†MN

(
L−1
M,M̂ ;N

− I
)
.

It is noticed by (28) and (30) that ARM ;N,N̂ = A = L
M,M̂ ;N

A, therefore

(37) AR−1
M ;N,N̂

= A = L−1
M,M̂ ;N

A.

It follows from (35) and (37) that

(38) A†
M̂N̂

A−A†MNA =
(
R−1
M ;N,N̂

− I
)
A†MNA,

(39) AA†
M̂N̂
−AA†MN = AA†MN

(
L−1
M,M̂ ;N

− I
)
.
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Norm upper bounds (i)–(iv) can then be derived from (35), (36), (38), (39) and
(31)–(34). �
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