PERTURBATION ANALYSIS OF THE MOORE-PENROSE INVERSE FOR A CLASS OF BOUNDED OPERATORS IN HILBERT SPACES

Chunyuan Deng † and Yimin Wei ${ }^{\ddagger}$

Abstract

Let \mathcal{H} and \mathcal{K} be Hilbert spaces and let $T, \widetilde{T}=T+\delta T$ be bounded operators from \mathcal{H} into \mathcal{K}. In this article, two facts related to the perturbation bounds are studied. The first one is to find the upper bound of $\left\|\widetilde{T}^{+}-T^{+}\right\|$, which extends the results obtained by the second author and enriches the perturbation theory for the Moore-Penrose inverse. The other one is to develop explicit representations of projectors $\left\|\widetilde{T} \widetilde{T}^{+}-T T^{+}\right\|$ and $\left\|\widetilde{T}+\widetilde{T}-T^{+} T\right\|$. In addition, some spectral cases related to these results are analyzed.

1. Introduction

Let \mathcal{H} and \mathcal{K} be separable complex Hilbert spaces. Denote by $\mathcal{B}(\mathcal{H}, \mathcal{K})$ the set of all bounded linear operators from \mathcal{H} into \mathcal{K}. For an operator $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$, $\mathcal{R}(A), \mathcal{N}(A), A^{*}$ and $\|A\|$ denote the range, the null space, the adjoint and the spectral norm of A, respectively. The identity onto a closed subspace \mathcal{M} will be denoted by $I_{\mathcal{M}}$ or I if there is no confusion. For $T \in \mathcal{B}(\mathcal{H}, \mathcal{K})$, if there exists an operator $T^{+} \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ satisfying the following four operator equations

$$
T T^{+} T=T, \quad T^{+} T T^{+}=T^{+}, \quad T T^{+}=\left(T T^{+}\right)^{*}, \quad T^{+} T=\left(T^{+} T\right)^{*},
$$

then T^{+}is called the Moore-Penrose inverse of T. It is well known that T has the Moore-Penrose inverse if and only if $\mathcal{R}(T)$ is closed and the Moore-Penrose inverse of T is unique (see $[1,2]$).

Let $T \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ with closed range and let $\widetilde{T}=T+\delta T$ be the perturbation of T by $\delta T \in \mathcal{B}(\mathcal{H}, \mathcal{K})$. The perturbation theory of a generalized inverse is

[^0]concerned with the question that if T has a generalized inverse, when has \widetilde{T} a generalized inverse? What are the upper bounds for $\left\|\widetilde{T}^{+}-T^{+}\right\|$?

For the perturbation in Hilbert spaces and Banach spaces, the authors in $[21,3,5,4,6,7,8,12,9,10,11]$ and $[15,19,17,16,18,20]$ have obtained some results. For example, Wei and Ding [19] gave the explicit formula for the generalized inverse of the perturbed operator under some conditions. In this paper, we will generalize the result of [19] to the cases:

Case 1: $\left(I-T T^{+}\right) \delta T T^{+} T=0$,
Case 2: $\left(I-T T^{+}\right)\left(I+\delta T T^{+}\right)^{-1} \delta T\left(I-T^{+} T\right)=0$.
Under these assumptions on perturbation operator δT, upper bounds for $\left\|\widetilde{T}^{+}\right\|$ and $\left\|\widetilde{T}^{+}-T^{+}\right\|$are presented. And the explicit representations of \widetilde{T}^{+}, projectors $\left\|\widetilde{T} \widetilde{T}^{+}-T T^{+}\right\|$and $\left\|\widetilde{T}^{+} \widetilde{T}-T^{+} T\right\|$ in terms of δT and T are obtained. These not only cover the special cases but also improve over the results of [19].

2. The upper bound of $\left\|\widetilde{T}^{+}-T^{+}\right\|$

In this section, we shall consider the problem of the upper bound of $\| \widetilde{T}^{+}{ }_{-}$ $T^{+} \|$, which are based on explicit expressions for \widetilde{T}^{+}. Let T and δT have the form

$$
T=\left(\begin{array}{cc}
0 & 0 \tag{1}\\
0 & T_{1}
\end{array}\right), \quad \delta T=\left(\begin{array}{cc}
\delta_{3} & \delta_{4} \\
\delta_{2} & \delta_{1}
\end{array}\right)
$$

where T_{1} as an operator from $\mathcal{R}\left(T^{*}\right)$ onto $\mathcal{R}(T)$ is invertible. Throughout this paper, we need some notations. Let

$$
\begin{align*}
\omega_{T} & =\left(I+T^{+} \delta T\right)^{-1} T^{+} \delta T\left(I-T^{+} T\right) \\
\nu_{T} & =\left(\left(I-T T^{+}\right) \delta T\right)^{+}\left(I-T T^{+}\right) \delta T \tag{2}\\
M & =T^{+} T\left(I+T^{+} \delta T\right)^{-1}\left(I-T^{+} T\right) \\
N & =\left(I-T T^{+}\right)\left(I+\delta T T^{+}\right)^{-1} T T^{+}
\end{align*}
$$

We first present general expressions for \widetilde{T}^{+}when it is only assumed that $\delta_{4}=0$.
Theorem 1. Suppose that

$$
\left\|T^{+} \delta T\right\|<1, \quad\left(I-T T^{+}\right) \delta T T^{+} T=0
$$

Then \widetilde{T}^{+}exists if and only if $\mathcal{R}\left(\left(I-T T^{+}\right) \delta T\right)$ is closed. In this case,

$$
\begin{aligned}
\widetilde{T}^{+}= & \left(I+\left(I-\nu_{T}\right)^{*} \omega_{T}^{*}\right) T^{+} T\left[I+\omega_{T}\left(I-\nu_{T}\right)\left(I-\nu_{T}\right)^{*} \omega_{T}^{*}\right]^{-1} \\
& \times\left(I+T^{+} \delta T\right)^{-1} T^{+}\left[I-\delta T\left(\left(I-T T^{+}\right) \delta T\right)^{+}\right]+\left(\left(I-T T^{+}\right) \delta T\right)^{+}
\end{aligned}
$$

and

$$
\left\|\widetilde{T}^{+}-T^{+}\right\| \leq\left\|\left(\left(I-T T^{+}\right) \delta T\right)^{+}\right\|+\frac{\left\|T^{+} \delta T\right\|\left\|T^{+}\right\|}{1-\|T+\delta T\|}\left(1+\frac{\left\|I-\delta T\left(\left(I-T T^{+}\right) \delta T\right)^{+}\right\|}{\left(1-\left\|T T^{+} \delta T\right\|\right)^{2}}\right)
$$

Proof. Let T and δT have the form as Eqn. (1), ω_{T} and ν_{T} have the form as Eqn. (2). $\left\|T^{+} \delta T\right\|<1$ implies that $I+T^{+} \delta T$ is invertible; $\left(I-T T^{+}\right) \delta T T^{+} T=$ 0 implies that $\delta_{4}=0$. Since $T^{+}=0 \oplus T_{1}^{-1}$, the invertibility of $I+T^{+} \delta T$ implies that $T_{1}+\delta_{1}=T_{1}\left(I+T_{1}^{-1} \delta_{1}\right)$ is invertible. From

$$
\left(\begin{array}{cc}
\delta_{3} & 0 \\
\delta_{2} & T_{1}+\delta_{1}
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
-\left(T_{1}+\delta_{1}\right)^{-1} \delta_{2} & \left(T_{1}+\delta_{1}\right)^{-1}
\end{array}\right)=\left(\begin{array}{cc}
\delta_{3} & 0 \\
0 & I
\end{array}\right),
$$

we get that $\mathcal{R}(\widetilde{T})$ is closed if and only if $\mathcal{R}\left(\delta_{3}\right)=\mathcal{R}\left(\left(I-T T^{+}\right) \delta T\right)$ is closed. Hence \widetilde{T}^{+}exists if and only if $\mathcal{R}\left(\left(I-T T^{+}\right) \delta T\right)$ is closed.

Since $\mathcal{R}\left(\delta_{3}\right)$ is closed, \widetilde{T} as an operator from $\mathcal{N}\left(\delta_{3}\right) \oplus \mathcal{R}\left(\delta_{3}^{*}\right) \oplus \mathcal{R}\left(T^{*}\right)$ into $\mathcal{N}\left(\delta_{3}^{*}\right) \oplus \mathcal{R}\left(\delta_{3}\right) \oplus \mathcal{R}(T)$ has the form

$$
\widetilde{T}=\left(\begin{array}{cc}
\delta_{3} & 0 \\
\delta_{2} & T_{1}+\delta_{1}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \delta_{31} & 0 \\
\delta_{22} & \delta_{21} & T_{1}+\delta_{1}
\end{array}\right)
$$

where δ_{31} as an operator from $\mathcal{R}\left(\delta_{3}^{*}\right)$ onto $\mathcal{R}\left(\delta_{3}\right)$ is invertible. Now, we define $\Delta=\left[I+\left(T_{1}+\delta_{1}\right)^{-1} \delta_{2}\left(I-\delta_{3}^{+} \delta_{3}\right) \delta_{2}^{*}\left(T_{1}^{*}+\delta_{1}^{*}\right)^{-1}\right]^{-1}$,

$$
N=\binom{0}{\delta_{22}}, \quad M=\left(\begin{array}{cc}
\delta_{31} & 0 \\
\delta_{21} & T_{1}+\delta_{1}
\end{array}\right)
$$

and

$$
\begin{aligned}
\triangle^{\prime} & =\left[\left(T_{1}+\delta_{1}\right)\left(T_{1}+\delta_{1}\right)^{*}+\delta_{22} \delta_{22}^{*}\right]^{-1} \\
& =\left[\left(T_{1}+\delta_{1}\right)\left(T_{1}+\delta_{1}\right)^{*}+\delta_{2}\left(I-\delta_{3}^{+} \delta_{3}\right) \delta_{2}^{*}\right]^{-1} \\
& =\left(T_{1}^{*}+\delta_{1}^{*}\right)^{-1}\left[I+\left(T_{1}+\delta_{1}\right)^{-1} \delta_{2}\left(I-\delta_{3}^{+} \delta_{3}\right) \delta_{2}^{*}\left(T_{1}^{*}+\delta_{1}^{*}\right)^{-1}\right]^{-1}\left(T_{1}+\delta_{1}\right)^{-1} \\
& =\left(T_{1}^{*}+\delta_{1}^{*}\right)^{-1} \triangle\left(T_{1}+\delta_{1}\right)^{-1} .
\end{aligned}
$$

So

$$
\begin{align*}
\widetilde{T}^{+} & =\left(\begin{array}{cc}
0 & 0 \\
N & M
\end{array}\right)^{*}\left[\left(\begin{array}{cc}
0 & 0 \\
N & M
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
N & M
\end{array}\right)^{*}\right]^{+} \\
& =\left(\begin{array}{cc}
0 & N^{*}\left(N N^{*}+M M^{*}\right)^{-1} \\
0 & M^{*}\left(N N^{*}+M M^{*}\right)^{-1}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0 & -\delta_{22}^{*} \triangle^{\prime} \delta_{21} \delta_{31}^{-1} & \delta_{22}^{*} \triangle^{\prime} \\
0 & \delta_{31}^{-1} & 0 \\
0 & -\left(T_{1}+\delta_{1}\right)^{*} \triangle^{\prime} \delta_{21} \delta_{31}^{-1} & \left(T_{1}+\delta_{1}\right)^{*} \triangle^{\prime}
\end{array}\right) \tag{3}\\
& =\left(\begin{array}{cc}
\delta_{3}^{+}-\left(I-\delta_{3}^{+} \delta_{3}\right)_{2}^{*} \triangle^{\prime} \delta_{2} \delta_{3}^{+} & \left(I-\delta_{3}^{+} \delta_{3}\right) \delta_{2}^{*} \triangle^{\prime} \\
-\left(T_{1}+\delta_{1}\right)^{*} \triangle^{\prime} \delta_{2} \delta_{3}^{+} & \left(T_{1}+\delta_{1}\right)^{*} \triangle^{\prime}
\end{array}\right)
\end{align*}
$$

$$
\begin{aligned}
= & \left(\begin{array}{cc}
\delta_{3}^{+} & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
I & \left(I-\delta_{3}^{+} \delta_{3}\right) \delta_{2}^{*}\left(T_{1}^{*}+\delta_{1}^{*}\right)^{-1} \\
0 & I
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & I
\end{array}\right) \\
& \times\left(\begin{array}{cc}
I & 0 \\
0 & \triangle
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & \left(T_{1}+\delta_{1}\right)^{-1}
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
-\delta_{2} \delta_{3}^{+} & I
\end{array}\right) .
\end{aligned}
$$

Note that $\delta_{3}^{+} \oplus 0=\left(\left(I-T T^{+}\right) \delta T\right)^{+}, 0 \oplus\left(T_{1}+\delta_{1}\right)^{-1}=\left(I+T^{+} \delta T\right)^{-1} T^{+}$,

$$
\begin{aligned}
\left(\begin{array}{cc}
0 & 0 \\
0 & \left(T_{1}+\delta_{1}\right)^{-1}
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
-\delta_{2} \delta_{3}^{+} & I
\end{array}\right)= & \left(I+T^{+} \delta T\right)^{-1} T^{+}\left[I-\delta T\left(\left(I-T T^{+}\right) \delta T\right)^{+}\right] \\
\left(\begin{array}{cc}
I & \left(I-\delta_{3}^{+} \delta_{3}\right) \delta_{2}^{*}\left(T_{1}^{*}+\delta_{1}^{*}\right)^{-1} \\
0 & I
\end{array}\right)= & {\left[I+\left(I+T^{+} \delta T\right)^{-1} T^{+} \delta T\left(I-T^{+} T\right)\right.} \\
& \left.\times\left(I-\left(\left(I-T T^{+}\right) \delta T\right)^{+}\left(I-T T^{+}\right) \delta T\right)\right]^{*} \\
= & \left(I+\omega_{T}\left(I-\nu_{T}\right)\right)^{*} \\
= & I+\left(I-\nu_{T}\right)^{*} \omega_{T}^{*}
\end{aligned}
$$

and

$$
\begin{aligned}
I \oplus \Delta= & \left\{I+\left[\left(I+T^{+} \delta T\right)^{-1} T^{+} \delta T\left(I-T^{+} T\right)\right.\right. \\
& \left.\times\left(I-\left(\left(I-T T^{+}\right) \delta T\right)^{+}\left(I-T T^{+}\right) \delta T\right)\right] \\
& \times\left[\left(I+T^{+} \delta T\right)^{-1} T^{+} \delta T\left(I-T^{+} T\right)\right. \\
& \left.\left.\times\left(I-\left(\left(I-T T^{+}\right) \delta T\right)^{+}\left(I-T T^{+}\right) \delta T\right)\right]^{*}\right\}^{-1} \\
= & \left(I+\omega_{T}\left(I-\nu_{T}\right)\left(I-\nu_{T}\right)^{*} \omega_{T}^{*}\right)^{-1} .
\end{aligned}
$$

So, we have

$$
\begin{aligned}
\widetilde{T}^{+}= & {\left[I+\omega_{T}\left(I-\nu_{T}\right)\right]^{*} T^{+} T\left[I+\omega_{T}\left(I-\nu_{T}\right)\left(I-\nu_{T}\right)^{*} \omega_{T}^{*}\right]^{-1} } \\
& \times\left(I+T^{+} \delta T\right)^{-1} T^{+}\left[I-\delta T\left(\left(I-T T^{+}\right) \delta T\right)^{+}\right]+\left(\left(I-T T^{+}\right) \delta T\right)^{+}
\end{aligned}
$$

By using the equation that $\left(I+U V^{*}\right)^{-1}=I-U\left(I+V^{*} U\right)^{-1} V^{*}$ and $U^{*}(I+$ $\left.U U^{*}\right)^{-1}=\left(I+U^{*} U\right)^{-1} U^{*}$ we can prove that
$\widetilde{T}^{+}=\left[I+\omega_{T}\left(I-\nu_{T}\right)\right]^{*} T^{+} T\left[I+\omega_{T}\left(I-\nu_{T}\right)\left(I-\nu_{T}\right)^{*} \omega_{T}^{*}\right]^{-1}$

$$
\begin{aligned}
& \times\left(I+T^{+} \delta T\right)^{-1} T^{+}\left[I-\delta T\left(\left(I-T T^{+}\right) \delta T\right)^{+}\right]+\left(\left(I-T T^{+}\right) \delta T\right)^{+} \\
= & \left(I+T^{+} \delta T\right)^{-1}\left[I+\left(I-\nu_{T}\right)^{*} \omega_{T}^{*} \omega_{T}\left(I-\nu_{T}\right)\right]^{-1}\left(I-T^{+} T\right) \\
& {\left[\left(I+T^{+} \delta T\right)^{-1} T^{+} \delta T\left(I-\nu_{T}\right)\right]^{*}\left(I+T^{+} \delta T\right)^{-1} T^{+}\left[I-\delta T\left(\left(I-T T^{+}\right) \delta T\right)^{+}\right] } \\
& +\left(\left(I-T T^{+}\right) \delta T\right)^{+}+\left(I+T^{+} \delta T\right)^{-1} T^{+} .
\end{aligned}
$$

It follows from $\left(I+T^{+} \delta T\right)^{-1} T^{+}=T^{+}-T^{+} \delta T\left(I+T^{+} \delta T\right)^{-1} T^{+}$that

$$
\begin{aligned}
\widetilde{T}^{+}-T^{+}= & \left(\left(I-T T^{+}\right) \delta T\right)^{+}-T^{+} \delta T\left(I+T^{+} \delta T\right)^{-1} T^{+}+\left(I+T^{+} \delta T\right)^{-1} \\
& \times\left[I+\left(I-\nu_{T}\right)^{*} \omega_{T}^{*} \omega_{T}\left(I-\nu_{T}\right)\right]^{-1}\left(I-T^{+} T\right) \\
& \times\left[\left(I+T^{+} \delta T\right)^{-1} T^{+} \delta T\left(I-\nu_{T}\right)\right]^{*}\left(I+T^{+} \delta T\right)^{-1} T^{+} \\
& \times\left[I-\delta T\left(\left(I-T T^{+}\right) \delta T\right)^{+}\right] .
\end{aligned}
$$

Since $\left\|\left(I+A^{*} A\right)^{-1}\right\| \leq 1$ for arbitrary operator $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ and $\| I-((I-$ $\left.\left.T T^{+}\right) \delta T\right)^{+}\left(I-T T^{+}\right) \delta T \| \leq 1$, we arrive at

$$
\begin{aligned}
& \left\|\widetilde{T}^{+}-T^{+}\right\| \\
\leq & \left\|\left(\left(I-T T^{+}\right) \delta T\right)^{+}\right\|+\frac{\left\|T^{+} \delta T\right\|\left\|T^{+}\right\|}{1-\left\|T^{+} \delta T\right\|}+\frac{1}{1-\left\|T^{+} \delta T\right\|} \\
& \times \frac{\left\|T^{+} \delta T\right\|}{1-\left\|T^{+} \delta T\right\|} \frac{\left\|T^{+}\right\|\left\|I-\delta T\left(\left(I-T T^{+}\right) \delta T\right)^{+}\right\|}{1-\left\|T^{+} \delta T\right\|} \\
= & \left\|\left(\left(I-T T^{+}\right) \delta T\right)^{+}\right\|+\frac{\left\|T^{+} \delta T\right\|\left\|T^{+}\right\|}{1-\left\|T^{+} \delta T\right\|}\left(1+\frac{\left\|I-\delta T\left(\left(I-T T^{+}\right) \delta T\right)^{+}\right\|}{\left(1-\left\|T^{+} \delta T\right\|\right)^{2}}\right) .
\end{aligned}
$$

In addition, if $\delta_{4}=0$ and $\delta_{2} \delta_{3}^{+}=0$, we can get the following corollary.
Corollary 2. Suppose that

$$
\left\|T^{+} \delta T\right\|<1, \quad\left(I-T T^{+}\right) \delta T T^{+} T=0, \quad T T^{+} \delta T\left[\left(I-T^{+} T\right) \delta T\right]^{+}=0
$$

Then \widetilde{T}^{+}exists if and only if $\mathcal{R}\left(\left(I-T T^{+}\right) \delta T\right)$ is closed. In this case,

$$
\widetilde{T}^{+}=\left(I+\omega_{T}^{*}\right) T^{+} T\left(I+\omega_{T} \omega_{T}^{*}\right)^{-1}\left(I+T^{+} \delta T\right)^{-1} T^{+}+\left(\left(I-T T^{+}\right) \delta T\right)^{+}
$$

with

$$
\frac{\left\|\widetilde{T}^{+}-T^{+}\right\|}{\left\|T^{+}\right\|} \leq \frac{\left\|\left(\left(I-T T^{+}\right) \delta T\right)^{+}\right\|}{\left\|T^{+}\right\|}+\frac{\left\|T^{+} \delta T\right\|}{1-\left\|T^{+} \delta T\right\|}\left[1+\frac{1}{\left(1-\left\|T^{+} \delta T\right\|\right)^{2}}\right]
$$

Proof. Let T and δT have the form as Eqn. (1). Then

$$
\begin{gathered}
\delta T T^{+} T=T T^{+} \delta T T^{+} T \Longrightarrow \delta_{4}=0 \\
T T^{+} \delta T\left[\left(I-T^{+} T\right) \delta T\right]^{+}=0 \Longrightarrow \delta_{2} \delta_{3}^{+}=0
\end{gathered}
$$

So by Eqn. (3) we have

$$
\begin{align*}
\widetilde{T}^{+}= & \left(\begin{array}{cc}
\delta_{3}^{+} & \delta_{2}^{*}\left(T_{1}^{*}+\delta_{1}^{*}\right)^{-1} \triangle_{0}\left(T_{1}+\delta_{1}\right)^{-1} \\
0 & \triangle_{0}\left(T_{1}+\delta_{1}\right)^{-1} \\
= & \left(\begin{array}{cc}
\delta_{3}^{+} & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
I & \delta_{2}^{*}\left(T_{1}^{*}+\delta_{1}^{*}\right)^{-1} \\
0 & I
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & I
\end{array}\right) \\
& \times\left(\begin{array}{cc}
I & 0 \\
0 & \triangle_{0}
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & \left(T_{1}+\delta_{1}\right)^{-1}
\end{array}\right),
\end{array}\right.
\end{align*}
$$

where

$$
\triangle_{0}=\left[I+\left(T_{1}+\delta_{1}\right)^{-1} \delta_{2} \delta_{2}^{*}\left(T_{1}^{*}+\delta_{1}^{*}\right)^{-1}\right]^{-1}
$$

Note that $\delta_{3}^{+} \oplus 0=\left(\left(I-T T^{+}\right) \delta T\right)^{+}, 0 \oplus\left(T_{1}+\delta_{1}\right)^{-1}=\left(I+T^{+} \delta T\right)^{-1} T^{+}$, $\left(\begin{array}{cc}I & \delta_{2}^{*}\left(T_{1}^{*}+\delta_{1}^{*}\right)^{-1} \\ 0 & I\end{array}\right)=\left[I+\left(I+T^{+} \delta T\right)^{-1} T^{+} \delta T\left(I-T^{+} T\right)\right]^{*}=I+\omega_{T}^{*}$,
and

$$
\begin{aligned}
I \oplus \triangle_{0}= & \left\{I+\left[\left(I+T^{+} \delta T\right)^{-1} T^{+} \delta T\left(I-T^{+} T\right)\right]\right. \\
& \left.\times\left[\left(I+T^{+} \delta T\right)^{-1} T^{+} \delta T\left(I-T^{+} T\right)\right]^{*}\right\}^{-1} \\
= & \left(I+\omega_{T} \omega_{T}^{*}\right)^{-1} .
\end{aligned}
$$

The result then follows from these expressions. This completes the proof.
Comparing our Theorem 1 and Corollary 2 with Theorem 2 in [19], we can see that

$$
\left(I-T T^{+}\right) \delta T=0 \Longleftrightarrow \mathcal{R}(\delta T) \subset \mathcal{R}(T)
$$

and Theorem 2 in [19] become a particular case of Theorem 1 and Corollary 2. So Theorem 1 gives an improvement over that of [19].

Corollary 3 ([19]). Suppose that

$$
\mathcal{R}(\delta T) \subset \mathcal{R}(T), \quad\left\|T^{+} \delta T\right\|<1
$$

Then \widetilde{T}^{+}exists,

$$
\widetilde{T}^{+}=\left(I+\omega_{T}^{*}\right) T^{+} T\left(I+\omega_{T} \omega_{T}^{*}\right)^{-1}\left(I+T^{+} \delta T\right)^{-1} T^{+}
$$

with

$$
\frac{\left\|\widetilde{T}^{+}-T^{+}\right\|}{\left\|T^{+}\right\|} \leq \frac{\left\|T^{+} \delta T\right\|}{1-\left\|T^{+} \delta T\right\|}\left[1+\frac{1}{\left(1-\left\|T^{+} \delta T\right\|\right)^{2}}\right]
$$

Moreover, if $T \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ is injective with closed range, then $T^{+} T=I$. The following corollary are the special case of Theorem 1, Corollary 2, and Corollary 3 .

Corollary 4 ([11]). Suppose that $T \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ is injective with closed range. If $\mathcal{R}(\delta T) \subset \mathcal{R}(T)$ and $\left\|T^{+} \delta T\right\|<1$, then \widetilde{T}^{+}is injective with closed range. Moreover, $\mathcal{R}(\widetilde{T})=\mathcal{R}(T), \widetilde{T}^{+}=\left(I+T^{+} \delta T\right)^{-1} T^{+}=T^{+}\left(I+\delta T T^{+}\right)^{-1}$ and

$$
\frac{\left\|\widetilde{T}^{+}-T^{+}\right\|}{\left\|T^{+}\right\|} \leq \frac{\left\|T^{+} \delta T\right\|}{1-\left\|T^{+} \delta T\right\|}
$$

Similarly, if $\delta_{2}=0$, then \widetilde{T}^{*} and T^{*} satisfy the conditions of Theorem 1. It is easy to see the following result holds.

Theorem 5. Suppose that

$$
\left\|\delta T T^{+}\right\|<1, \quad T T^{+} \delta T\left(I-T^{+} T\right)=0
$$

Then \widetilde{T}^{+}exists if and only if $\mathcal{R}\left(\delta T\left(I-T^{+} T\right)\right)$ is closed. In this case,

$$
\begin{aligned}
\widetilde{T}^{+}= & \left(\delta T\left(I-T^{+} T\right)\right)^{+}+\left[I-\left(\delta T\left(I-T^{+} T\right)\right)^{+} \delta T\right] T^{+}\left(I+\delta T T^{+}\right)^{-1} \\
& \times\left[I+\omega_{T}^{\prime *}\left(I-\nu_{T}^{\prime}\right)^{*}\left(I-\nu_{T}^{\prime}\right) \omega_{T}^{\prime}\right]^{-1} T T^{+}\left(I+\omega_{T}^{*}\left(I-\nu_{T}^{\prime}\right)^{*}\right)
\end{aligned}
$$

and
$\left\|\widetilde{T}^{+}-T^{+}\right\| \leq\left\|\left(\delta T\left(I-T^{+} T\right)\right)^{+}\right\|+\frac{\left\|\delta T T^{+}\right\|\left\|T^{+}\right\|}{1-\left\|\delta T T^{+}\right\|}\left(1+\frac{\left\|I-\left(\delta T\left(I-T^{+} T\right)\right)^{+} \delta T\right\|}{\left(1-\left\|\delta T T^{+}\right\|\right)^{2}}\right)$,
where $\omega_{T}^{\prime}=\left(I-T T^{+}\right) \delta T T^{+}\left(I+\delta T T^{+}\right)^{-1}$ and $\nu_{T}^{\prime}=\left(\delta T\left(I-T^{+} T\right)\right)(\delta T(I-$ $\left.\left.T^{+} T\right)\right)^{+}$.

3. The bound of $\left\|\widetilde{T} \widetilde{T}^{+}-T T^{+}\right\|$

In this section, we mainly study the perturbation on the case that $\delta_{3}=$ $\delta_{4}\left(T_{1}+\delta_{1}\right)^{-1} \delta_{2}$. The explicit representations of projectors $\left\|\widetilde{T} \widetilde{T}^{+}-T T^{+}\right\|$and $\left\|\widetilde{T}^{+} \widetilde{T}-T^{+} T\right\|$ will be establish. As we know, if $\mathcal{R}(A), \mathcal{R}(B)$ and $\mathcal{R}(A B)$ are closed, then the rule $(A B)^{+}=B^{+} A^{+}$is called the reverse order rule for the Moore-Penrose inverse (and it does not hold in general). In [1], it is shown that if $\mathcal{R}(A), \mathcal{R}(B)$ and $\mathcal{R}(A B)$ are closed, then the following statements are equivalent:
(a) $(A B)^{+}=B^{+} A^{+}$;
(b) $\mathcal{R}\left(A^{*} A B\right) \subset \mathcal{R}(B)$ and $\mathcal{R}\left(B B^{*} A^{*}\right) \subset \mathcal{R}\left(A^{*}\right)$.

Let ω_{T}, ν_{T}, M and N be defined as Eqn. (2). From above result, we can deduce the following perturbation result.
Theorem 6. Suppose that

$$
\left\|\delta T T^{+}\right\|<1, \quad\left(I-T T^{+}\right)\left(I+\delta T T^{+}\right)^{-1} \delta T\left(I-T^{+} T\right)=0
$$

Then \widetilde{T}^{+}exists. In this case,

$$
\widetilde{T}^{+}=\left(T^{+} T-M^{*}\right)\left(I+M M^{*}\right)^{-1} T^{+}\left(I+\delta T T^{+}\right)^{-1}\left(I+N^{*} N\right)^{-1}\left(T T^{+}-N^{*}\right)
$$

and

$$
\|\widetilde{T}\| \leq \frac{\left\|T^{+}\right\|}{1-\left\|\delta T T^{+}\right\|}
$$

Proof. Let T and δT have the representations as Eqn. (1). $\left\|T^{+} \delta T\right\|<1$ implies that $T_{1}+\delta_{1}$ is invertible. If $\left(I-T T^{+}\right)\left(I+\delta T T^{+}\right)^{-1} \delta T\left(I-T^{+} T\right)=0$, then $\delta_{3}=\delta_{4}\left(T_{1}+\delta_{1}\right)^{-1} \delta_{2}$ and
$\widetilde{T}=\left(\begin{array}{cc}\delta_{4}\left(T_{1}+\delta_{1}\right)^{-1} \delta_{2} & \delta_{4} \\ \delta_{2} & T_{1}+\delta_{1}\end{array}\right)=\left(\begin{array}{cc}0 & \delta_{4} \\ 0 & T_{1}+\delta_{1}\end{array}\right)\left(\begin{array}{cc}0 & 0 \\ \left(T_{1}+\delta_{1}\right)^{-1} \delta_{2} & I\end{array}\right)$.
Note that

$$
\begin{aligned}
& M=T^{+} T\left(I+T^{+} \delta T\right)^{-1}\left(I-T^{+} T\right)=\left(\begin{array}{cc}
0 & 0 \\
-\left(T_{1}+\delta_{1}\right)^{-1} \delta_{2} & 0
\end{array}\right), \\
& N=\left(I-T T^{+}\right)\left(I+\delta T T^{+}\right)^{-1} T T^{+}=\left(\begin{array}{cc}
0 & -\delta_{4}\left(T_{1}+\delta_{1}\right)^{-1} \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

Let

$$
A=\left(\begin{array}{cc}
0 & \delta_{4} \tag{5}\\
0 & T_{1}+\delta_{1}
\end{array}\right), \quad B=\left(\begin{array}{cc}
0 & 0 \\
\left(T_{1}+\delta_{1}\right)^{-1} \delta_{2} & I
\end{array}\right) .
$$

Then

$$
\begin{aligned}
A^{+} & =\left(A^{*} A\right)^{+} A^{*} \\
& =\left(\begin{array}{cc}
0 & \delta_{4}\left(T_{1}+\delta_{1}\right)^{-1}\left[I+\left(T_{1}^{*}+\delta_{1}^{*}\right)^{-1} \delta_{4}^{*} \delta_{4}\left(T_{1}+\delta_{1}\right)^{-1}\right]^{-1}\left(T_{1}^{*}+\delta_{1}^{*}\right)^{-1} \\
0 & {\left[I+\left(T_{1}^{*}+\delta_{1}^{*}\right)^{-1} \delta_{4}^{*} \delta_{4}\left(T_{1}+\delta_{1}\right)^{-1}\right]^{-1}\left(T_{1}^{*}+\delta_{1}^{*}\right)^{-1}}
\end{array}\right)^{*} \\
& =T^{+}\left(I+\delta T T^{+}\right)^{-1}\left(I+N^{*} N\right)^{-1}\left(T T^{+}-N^{*}\right) .
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|A^{+}\right\|^{2} & =\left\|A^{+} A^{+*}\right\| \\
& =\left\|\left(T_{1}+\delta_{1}\right)^{-1}\left[I+\left(T_{1}^{*}+\delta_{1}^{*}\right)^{-1} \delta_{4}^{*} \delta_{4}\left(T_{1}+\delta_{1}\right)^{-1}\right]^{-1}\left(T_{1}^{*}+\delta_{1}^{*}\right)^{-1}\right\| \\
& \leq\left\|\left(T_{1}+\delta_{1}\right)^{-1}\right\|^{2}=\left\|T^{+}\left(I+\delta T T^{+}\right)^{-1}\right\|^{2} \\
& \leq\left(\frac{\left\|T^{+}\right\|}{1-\left\|\delta T T^{+}\right\|}\right)^{2} .
\end{aligned}
$$

Similarly, we have $B^{+}=B^{*}\left(B B^{*}\right)^{+}=\left(T^{+} T-M^{*}\right)\left(I+M M^{*}\right)^{-1}$ and

$$
\left\|B^{+}\right\|^{2}=\left\|B^{+*} B^{+}\right\|=\left\|\left[I+\left(T_{1}+\delta_{1}\right)^{-1} \delta_{2} \delta_{2}^{*}\left(T_{1}^{*}+\delta_{1}^{*}\right)^{-1}\right]^{-1}\right\| \leq 1
$$

By a direct calculation, we obtain that

$$
A^{+} A=0 \oplus I, \quad B B^{+}=0 \oplus I
$$

and

$$
A^{+} A B B^{*} A^{*}=B B^{*} A^{*}, \quad B B^{+} A^{*} A B=A^{*} A B .
$$

It implies that $\mathcal{R}\left(A^{*} A B\right) \subset \mathcal{R}(B)$ and $\mathcal{R}\left(B B^{*} A^{*}\right) \subset \mathcal{R}\left(A^{*}\right)$. Hence the reverse order rule holds,

$$
\begin{aligned}
\widetilde{T}^{+} & =(A B)^{+}=B^{+} A^{+} \\
& =\left(T^{+} T-M^{*}\right)\left(I+M M^{*}\right)^{-1} T^{+}\left(I+\delta T T^{+}\right)^{-1}\left(I+N^{*} N\right)^{-1}\left(T T^{+}-N^{*}\right)
\end{aligned}
$$

and $\|\widetilde{T}\| \leq\left\|B^{+}\right\|\left\|A^{+}\right\| \leq \frac{\left\|T^{+}\right\|}{1-\left\|\delta T T^{+}\right\|}$.
Next, we will give explicit expressions for $\left\|\widetilde{T} \widetilde{T}^{+}-T T^{+}\right\|$and $\left\|\widetilde{T}+\widetilde{T}-T^{+} T\right\|$. A auxiliary result is summarized in the following lemma.

Lemma 7 ([1]). If P and Q are two orthogonal projections, then

$$
\|P-Q\|=\max \{\|P(I-Q)\|,\|Q(I-P)\|\}
$$

Theorem 8. Suppose that

$$
\left\|T^{+} \delta T\right\|<1, \quad\left(I-T T^{+}\right) \delta T T^{+} T=0
$$

Then \widetilde{T}^{+}exists if and only if $\mathcal{R}\left(\left(I-T T^{+}\right) \delta T\right)$ is closed. In this case,

$$
\widetilde{T} \widetilde{T}^{+}-T T^{+}=P_{\mathcal{R}\left(\left(I-T T^{+}\right) \delta T\right)}
$$

and

$$
\begin{aligned}
& \left\|\widetilde{T}^{+} \widetilde{T}-T^{+} T\right\|^{2} \\
= & \begin{cases}\max \left\{1+\left\|\kappa^{*} \kappa\left(I+\kappa^{*} \kappa\right)^{-1}\right\|,\left\|\kappa \kappa^{*}\left(I+\kappa \kappa^{*}\right)^{-1}\right\|\right\} & \text { if }\left(I-T T^{+}\right) \delta T \neq\{0\}, \\
\max \left\{\left\|\kappa^{*} \kappa\left(I+\kappa^{*} \kappa\right)^{-1}\right\|,\left\|\kappa \kappa^{*}\left(I+\kappa \kappa^{*}\right)^{-1}\right\|\right\}, \quad \text { if }\left(I-T T^{+}\right) \delta T=\{0\},\end{cases}
\end{aligned}
$$

where $\kappa=\omega_{T}\left(I-\nu_{T}\right)$.
Proof. Let $T, \delta T$ and \widetilde{T}^{+}have the representations as Eqn. (1) and Eqn. (3). Then a direct calculation can show that $\widetilde{T} \widetilde{T}^{+}=\delta_{3} \delta_{3}^{+} \oplus I=P_{\mathcal{R}\left(\left(I-T T^{+}\right) \delta T\right)} \oplus I$ and $T T^{+}=0 \oplus I$. So the first result holds. From Eqn. (3) again we have $T^{+} T=0 \oplus I$ and $\widetilde{T} \widetilde{T}^{+}$has the matrix representation as:

$$
\left(\begin{array}{cc}
\delta_{3}^{+} \delta_{3}+\left(I-\delta_{3}^{+} \delta_{3}\right) \delta_{2}^{*}\left(T_{1}^{*}+\delta_{1}^{*}\right)^{-1} \triangle\left(T_{1}+\delta_{1}\right)^{-1} \delta_{2}\left(I-\delta_{3}^{+} \delta_{3}\right) & \left(I-\delta_{3}^{+} \delta_{3}\right) \delta_{2}^{*}\left(T_{1}^{*}+\delta_{1}^{*}\right)^{-1} \triangle \\
\triangle\left(T_{1}+\delta_{1}\right)^{-1} \delta_{2}\left(I-\delta_{3}^{+} \delta_{3}\right) & \triangle
\end{array}\right)
$$

So we have

$$
\widetilde{T}^{+} \widetilde{T}\left(I-T^{+} T\right)=\left(\begin{array}{cc}
\delta_{3}^{+} \delta_{3}+\left(I-\delta_{3}^{+} \delta_{3}\right) \delta_{2}^{*}\left(T_{1}^{*}+\delta_{1}^{*}\right)^{-1} \triangle\left(T_{1}+\delta_{1}\right)^{-1} \delta_{2}\left(I-\delta_{3}^{+} \delta_{3}\right) & 0 \\
\triangle\left(T_{1}+\delta_{1}\right)^{-1} \delta_{2}\left(I-\delta_{3}^{+} \delta_{3}\right) & 0
\end{array}\right)
$$

and

$$
T^{+} T\left(I-\widetilde{T}^{+} \widetilde{T}\right)=\left(\begin{array}{cc}
0 & 0 \\
-\triangle\left(T_{1}+\delta_{1}\right)^{-1} \delta_{2}\left(I-\delta_{3}^{+} \delta_{3}\right) & I-\triangle
\end{array}\right)
$$

where $\triangle=\left[I+\left(T_{1}+\delta_{1}\right)^{-1} \delta_{2}\left(I-\delta_{3}^{+} \delta_{3}\right) \delta_{2}^{*}\left(T_{1}^{*}+\delta_{1}^{*}\right)^{-1}\right]^{-1}$.

Let $X=\left(T_{1}+\delta_{1}\right)^{-1} \delta_{2}\left(I-\delta_{3}^{+} \delta_{3}\right)$ and $\kappa=\omega_{T}\left(I-\nu_{T}\right)$. By the proof of Theorem 1, we have $\|X\|=\|\kappa\|$. Hence

$$
\begin{aligned}
& \left\|\widetilde{T}^{+} \widetilde{T}\left(I-T^{+} T\right)\right\|^{2} \\
= & \left\|\left(\begin{array}{cc}
\delta_{3}^{+} \delta_{3}+\left(I-\delta_{3}^{+} \delta_{3}\right) \delta_{2}^{*}\left(T_{1}^{*}+\delta_{1}^{*}\right)^{-1} \triangle\left(T_{1}+\delta_{1}\right)^{-1} \delta_{2}\left(I-\delta_{3}^{+} \delta_{3}\right) & 0 \\
\triangle\left(T_{1}+\delta_{1}\right)^{-1} \delta_{2}\left(I-\delta_{3}^{+} \delta_{3}\right) & 0
\end{array}\right)\right\|^{2} \\
= & \left\|\left(\begin{array}{cc}
\delta_{3}^{+} \delta_{3}+X^{*}\left(I+X X^{*}\right)^{-1} X & 0 \\
\left(I+X X^{*}\right)^{-1} X & 0
\end{array}\right)\right\|^{2} \\
= & \left\|\left(\delta_{3}^{+} \delta_{3}+X^{*}\left(I+X X^{*}\right)^{-1} X\right)^{2}+X^{*}\left(I+X X^{*}\right)^{-2} X\right\| \\
= & \left\|\delta_{3}^{+} \delta_{3}+X^{*}\left(I+X X^{*}\right)^{-1} X X^{*}\left(I+X X^{*}\right)^{-1} X+X^{*}\left(I+X X^{*}\right)^{-2} X\right\| \\
= & \left\|\delta_{3}^{+} \delta_{3}+X^{*}\left(I+X X^{*}\right)^{-1} X\right\| \\
= & \left\|\delta_{3}^{+} \delta_{3}\right\|+\left\|X^{*}\left(I+X X^{*}\right)^{-1} X\right\| \\
= & \left\|\delta_{3}^{+} \delta_{3}\right\|+\left\|X^{*} X\left(I+X^{*} X\right)^{-1}\right\| \\
= & \begin{cases}1+\left\|\kappa^{*} \kappa\left(I+\kappa^{*} \kappa\right)^{-1}\right\|, & \text { if }\left(I-T T^{+}\right) \delta T \neq\{0\}, \\
\left\|\kappa^{*} \kappa\left(I+\kappa^{*} \kappa\right)^{-1}\right\|, & \text { if }\left(I-T T^{+}\right) \delta T=\{0\},\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|T^{+} T\left(I-\widetilde{T}^{+} \widetilde{T}\right)\right\|^{2} & =\left\|\left(\begin{array}{cc}
0 & 0 \\
-\triangle\left(T_{1}+\delta_{1}\right)^{-1} \delta_{2}\left(I-\delta_{3}^{+} \delta_{3}\right) & I-\triangle
\end{array}\right)\right\|^{2} \\
& =\left\|\left(\begin{array}{cc}
0 & 0 \\
\left(I+X X^{*}\right)^{-1} X & I-\left(I+X X^{*}\right)^{-1}
\end{array}\right)\right\|^{2} \\
& =\left\|\left(I+X X^{*}\right)^{-1} X X^{*}\left(I+X X^{*}\right)^{-1}+\left(I-\left(I+X X^{*}\right)^{-1}\right)^{2}\right\| \\
& =\left\|I-\left(I+X X^{*}\right)^{-1}\right\| \\
& =\left\|X X^{*}\left(I+X X^{*}\right)^{-1}\right\| \\
& =\left\|\kappa \kappa^{*}\left(I+\kappa \kappa^{*}\right)^{-1}\right\| .
\end{aligned}
$$

By Lemma 7, the result holds.
In particular, we can obtain the following corollary.
Corollary 9. Suppose that $\mathcal{R}(\delta T) \subset \mathcal{R}(T)$ and $\left\|T^{+} \delta T\right\|<1$. Then $\widetilde{T} \widetilde{T}^{+}-$ $T T^{+}=0$ and

$$
\left\|\widetilde{T}^{+} \widetilde{T}-T^{+} T\right\|^{2}=\max \left\{\left\|\omega_{T}^{*} \omega_{T}\left(I+\omega_{T}^{*} \omega_{T}\right)^{-1}\right\|,\left\|\omega_{T} \omega_{T}^{*}\left(I+\omega_{T} \omega_{T}^{*}\right)^{-1}\right\|\right\}
$$

From Theorem 8, a continuity of the Moore-Penrose inverse can be developed.

Corollary 10. Let $T \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ with the Moore-Penrose inverse T^{+}. Let $T_{n} \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ satisfy $T_{n} \rightarrow T,\left(T_{n}-T\right) T^{+} T=T T^{+}\left(T_{n}-T\right) T^{+} T$ and $\mathcal{R}\left(\left(I-T T^{+}\right)\left(T_{n}-T\right)\right)$ closed for n large enough. Then $T_{n}^{+} \rightarrow T^{+}$if and only if $\left(I-T T^{+}\right)\left(T_{n}-T\right)=0$.

Proof. Since $T_{n} \rightarrow T$ and $T_{n}^{+} \rightarrow T^{+}$, we get $\left\|P_{\mathcal{R}\left(\left(I-T T^{+}\right)\left(T_{n}-T\right)\right)}\right\|=\| T_{n} T_{n}^{+}-$ $T T^{+} \|<1$ by Theorem 8. It implies that $P_{\mathcal{R}\left(\left(I-T T^{+}\right)\left(T_{n}-T\right)\right)}=0$. Hence $\left(I-T T^{+}\right)\left(T_{n}-T\right)=0$.

Conversely, if $\left(I-T T^{+}\right)\left(T_{n}-T\right)=0$, then Theorem 8 implies that

$$
T_{n} T_{n}^{+}-T T^{+}=0, \quad T_{n}^{+} T_{n}-T^{+} T \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Since

$$
T_{n}^{+}-T^{+}=T_{n}^{+}\left(T-T_{n}\right) T^{+}+T_{n}^{+}\left(T_{n} T_{n}^{+}-T T^{+}\right)+\left(T_{n}^{+} T_{n}-T^{+} T\right) T^{+}
$$

we get $T_{n}^{+} \rightarrow T^{+}$if $T_{n} \rightarrow T$.
Theorem 11. Suppose that

$$
\left\|\delta T T^{+}\right\|<1, \quad\left(I-T T^{+}\right)\left(I+\delta T T^{+}\right)^{-1} \delta T\left(I-T^{+} T\right)=0
$$

Then

$$
\begin{aligned}
& \left\|\widetilde{T}^{+} \widetilde{T}-T^{+} T\right\|^{2}=\max \left\{\left\|M^{*} M\left(I+M^{*} M\right)^{-1}\right\|,\left\|\left(I+M M^{*}\right)^{-1} M M^{*}\right\|\right\} \\
& \left\|\widetilde{T} \widetilde{T}^{+}-T T^{+}\right\|^{2}=\max \left\{\left\|N^{*} N\left(I+N^{*} N\right)^{-1}\right\|,\left\|\left(I+N N^{*}\right)^{-1} N N^{*}\right\|\right\}
\end{aligned}
$$

Proof. Let A and B be defined as Eqn. (5). From Theorem 6 we get

$$
\begin{aligned}
& \widetilde{T}^{+} \widetilde{T}\left(I-T^{+} T\right)=B^{+} A^{+} A B\left(I-T^{+} T\right)=B^{+} B\left(I-T^{+} T\right) \\
= & \left(\begin{array}{cc}
\delta_{2}^{*}\left(T_{1}^{*}+\delta_{1}^{*}\right)^{-1}\left[I+\left(T_{1}+\delta_{1}\right)^{-1} \delta_{2} \delta_{2}^{*}\left(T_{1}^{*}+\delta_{1}^{*}\right)^{-1}\right]^{-1}\left(T_{1}+\delta_{1}\right)^{-1} \delta_{2} & 0 \\
{\left[I+\left(T_{1}+\delta_{1}\right)^{-1} \delta_{2} \delta_{2}^{*}\left(T_{1}^{*}+\delta_{1}^{*}\right)^{-1}\right]^{-1}\left(T_{1}+\delta_{1}\right)^{-1} \delta_{2}} & 0
\end{array}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& T^{+} T\left(I-\widetilde{T}^{+} \widetilde{T}\right)=T^{+} T\left(I-B^{+} B\right) \\
= & \left(\begin{array}{cc}
0 & -\delta_{2}^{*}\left(T_{1}^{*}+\delta_{1}^{*}\right)^{-1}\left[I+\left(T_{1}+\delta_{1}\right)^{-1} \delta_{2} \delta_{2}^{*}\left(T_{1}^{*}+\delta_{1}^{*}\right)^{-1}\right]^{-1} \\
0 & I-\left[I+\left(T_{1}+\delta_{1}\right)^{-1} \delta_{2} \delta_{2}^{*}\left(T_{1}^{*}+\delta_{1}^{*}\right)^{-1}\right]^{-1}
\end{array}\right)^{*} .
\end{aligned}
$$

Similar to the proof of Theorem 8, we get

$$
\begin{aligned}
& \left\|\widetilde{T}^{+} \widetilde{T}\left(I-T^{+} T\right)\right\|^{2} \\
= & \left\|\delta_{2}^{*}\left(T_{1}^{*}+\delta_{1}^{*}\right)^{-1}\left[I+\left(T_{1}+\delta_{1}\right)^{-1} \delta_{2} \delta_{2}^{*}\left(T_{1}^{*}+\delta_{1}^{*}\right)^{-1}\right]^{-1}\left(T_{1}+\delta_{1}\right)^{-1} \delta_{2}\right\| \\
= & \left\|M^{*}\left(I+M M^{*}\right)^{-1} M\right\|=\left\|M^{*} M\left(I+M^{*} M\right)^{-1}\right\|
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\|T^{+} T\left(I-\widetilde{T}^{+} \widetilde{T}\right)\right\|^{2} \\
= & \left\|\left[I+\left(T_{1}+\delta_{1}\right)^{-1} \delta_{2} \delta_{2}^{*}\left(T_{1}^{*}+\delta_{1}^{*}\right)^{-1}\right]^{-1}\left(T_{1}+\delta_{1}\right)^{-1} \delta_{2} \delta_{2}^{*}\left(T_{1}^{*}+\delta_{1}^{*}\right)^{-1}\right\|
\end{aligned}
$$

$$
=\left\|\left(I+M M^{*}\right)^{-1} M M^{*}\right\| .
$$

Hence

$$
\left\|\widetilde{T}^{+} \widetilde{T}-T^{+} T\right\|^{2}=\max \left\{\left\|M^{*} M\left(I+M^{*} M\right)^{-1}\right\|,\left\|\left(I+M M^{*}\right)^{-1} M M^{*}\right\|\right\} .
$$

In a similar vein, we can show that

$$
\left\|\widetilde{T} \widetilde{T}^{+}-T T^{+}\right\|^{2}=\max \left\{\left\|N^{*} N\left(I+N^{*} N\right)^{-1}\right\|,\left\|\left(I+N N^{*}\right)^{-1} N N^{*}\right\|\right\}
$$

4. Conclusion remarks

In this paper, we present some perturbation bounds of $\left\|\widetilde{T}^{+}-T^{+}\right\|, \| \widetilde{T} \widetilde{T}^{+}{ }_{-}$ $T T^{+} \|$and $\left\|\widetilde{T}^{+} \widetilde{T}-T^{+} T\right\|$ under some conditions. It is natural to ask if we can remove these restrictions, which will be the future research topic.

References

[1] R. H. Bouldin, Generalized inverses and factorizations, Recent applications of generalized inverses, pp. 233-249, Res. Notes in Math., 66, Pitman, Boston, Mass.-London, 1982.
[2] S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations, Surveys and Reference Works in Mathematics, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979.
[3] G. Chen, Y. Wei, and Y. Xue, Perturbation analysis of the least squares solution in Hilbert spaces, Linear Algebra Appl. 244 (1996), 69-80.
[4] _, The generalized condition numbers of bounded linear operators in Banach spaces, J. Aust. Math. Soc. 76 (2004), no. 2, 281-290.
[5] G. Chen and Y. Xue, Perturbation analysis for the operator equation $T x=b$ in Banach spaces, J. Math. Anal. Appl. 212 (1997), no. 1, 107-125.
[6] , The expression of the generalized inverse of the perturbed operator under Type I perturbation in Hilbert spaces, Linear Algebra Appl. 285 (1998), no. 1-3, 1-6.
[7] J. Ding, New perturbation results on pseudo-inverses of linear operators in Banach spaces, Linear Algebra Appl. 362 (2003), 229-235.
[8] \qquad , On the expression of generalized inverses of perturbed bounded linear operators in Banach spaces, Missouri J. Math. Sci. 15 (2003), no. 1, 40-47.
[9] J. Ding and L. J. Huang, On the continuity of generalized inverses of linear operators in Hilbert spaces, Linear Algebra Appl. 262 (1997), 229-242.
[10] \qquad , Perturbation of generalized inverses of linear operators in Hilbert spaces, J. Math. Anal. Appl. 198 (1996), no. 2, 506-515.
\qquad , On the perturbation of the least squares solutions in Hilbert spaces, Linear Algebra Appl. 212/213 (1994), 487-500.
[12] J. Ding and Y. Wei, Relative errors versus residuals of approximate solutions of weighted least squares problems in Hilbert space, Comput. Math. Appl. 44 (2002), no. 3-4, 407411.
[13] C. W. Groetsch, Generalized Inverses of Linear Operators: representation and approximation, Monographs and Textbooks in Pure and Applied Mathematics, No. 37. Marcel Dekker, Inc., New York-Basel, 1977.
[14] M. Z. Nashed, Generalized Inverses and Applications, Academic Press, New York, 1976.
[15] G. W. Stewart, On the perturbation of pseudo-inverses, projections and linear least squares problems, SIAM Rev. 19 (1977), no. 4, 634-662.
[16] Y. Wei, The representation and approximation for the weighted Moore-Penrose inverse in Hilbert space, Appl. Math. Comput. 136 (2003), no. 2-3, 475-486.
[17] Y. Wei and G. Chen, Perturbation of least squares problem in Hilbert spaces, Appl. Math. Comput. 121 (2001), no. 2-3, 177-183.
[18] , Some equivalent conditions of stable perturbation of operators in Hilbert spaces, Appl. Math. Comput. 147 (2004), no. 3, 765-772.
[19] Y. Wei and J. Ding, Representations for Moore-Penrose inverses in Hilbert spaces, Appl. Math. Lett. 14 (2001), no. 5, 599-604.
[20] J. Zhou and G. Wang, Block idempotent matrices and generalized Schur complement, Appl. Math. Comput. 188 (2007), no. 1, 246-256.
[21] C. Zhu, J. Cai, and G. Chen, Perturbation analysis for the reduced minimum modulus of bounded linear operator in Banach spaces, Appl. Math. Comput. 145 (2003), no. 1, 13-21.

Chunyuan Deng
College of Mathematics Science
South China Normal University
Guangzhou 510631, P. R. China
E-mail address: cydeng@scnu.edu.cn
Yimin Wei
School of Mathematical Sciences
Fudan University
Shanghai, 200433, P. R. China
Key Laboratory of Mathematics for Nonlinear Sciences
(Fudan University), Ministry of Education
E-mail address: ymwei@fudan.edu.cn

[^0]: Received October 4, 2008.
 2000 Mathematics Subject Classification. 47A05, 46C07, 15A09.
 Key words and phrases. generalized inverse, Moore-Penrose inverse, perturbation, block operator matrix.
 ${ }^{\dagger}$ Partial support was provided by the National Natural Science Foundation Grants of China (No.10571113) and Shaanxi Province Education Committee (No. 09JK380).
 \ddagger This author is supported by the National Natural Science Foundation of China under grant 10871051, Shanghai Municipal Science \& Technology Committee under grant 09DZ2272900 and Shanghai Municipal Education Committee (Dawn Project).

