• Title/Summary/Keyword: Microfluidic Chip

Search Result 151, Processing Time 0.025 seconds

In situ analysis of capturing dynamics of magnetic nanoparticles in a microfluidic system

  • Munir, Ahsan;Zhu, Zanzan;Wang, Jianlong;Zhou, H. Susan
    • Smart Structures and Systems
    • /
    • v.12 no.1
    • /
    • pp.1-22
    • /
    • 2013
  • Magnetic nanoparticle based bioseparation in microfluidics is a multiphysics phenomenon that involves interplay of various parameters. The ability to understand the dynamics of these parameters is a prerequisite for designing and developing more efficient magnetic cell/bio-particle separation systems. Therefore, in this work proof-of-concept experiments are combined with advanced numerical simulation to design and optimize the capturing process of magnetic nanoparticles responsible for efficient microfluidic bioseparation. A low cost generic microfluidic platform was developed using a novel micromolding method that can be done without a clean room techniques and at much lower cost and time. Parametric analysis using both experiments and theoretical predictions were performed. It was found that flow rate and magnetic field strength greatly influence the transport of magnetic nanoparticles in the microchannel and control the capturing efficiency. The results from mathematical model agree very well with experiments. The model further demonstrated that a 12% increase in capturing efficiency can be achieved by introducing of iron-grooved bar in the microfluidic setup that resulted in increase in magnetic field gradient. The numerical simulations were helpful in testing and optimizing key design parameters. Overall, this work demonstrated that a simple low cost experimental proof-of-concept setup can be synchronized with advanced numerical simulation not only to enhance the functional performance of magneto-fluidic capturing systems but also to efficiently design and develop microfluidic bioseparation systems for biomedical applications.

Measurement of cell aggregation characteristics by analysis of laser-backscattering in a microfluidic rheometry

  • Shin, Se-Hyun;Hou, J.X.;Suh, Jang-Soo
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.2
    • /
    • pp.61-66
    • /
    • 2007
  • The aggregation characteristics of red blood cells (RBCs) are known as important factors in the microvascular flow system, and increased RBC aggregation has been observed in various pathological diseases, such as thrombosis and myocardial infarction. This paper describes a simple microfluidic device for measuring the RBC aggregation by integrating a microfluidic slit rheometry and laser-backscattering technique. While a decreasing-pressure mechanism was applied to the microfluidic rheometry, a syllectogram (the light intensity versus time) showed an initial increase and a peak caused by the high shear stress-induced disaggregation, immediately followed by a decrease in the light intensity due to RBC aggregation. The critical shear stress (CST) corresponding to the peak intensity was examined as a new index of the RBC aggregation characteristics. The CST of RBCs increased with increasing aggregation-dominating protein (fibrinogen) in the blood plasma. The essential feature of this design was the combination of the rheometric-optic characterization of RBC aggregation with a microfluidic chip, which may potentially allow cell aggregation measurements to be easily carried out in a clinical setting.

Quantitative Determination of Nicotine in a PDMS Microfluidic Channel Using Surface Enhanced Raman Spectroscopy

  • Jung, Jae-hyun;Choo, Jae-bum;Kim, Duck-Joong;Lee, Sang-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.277-280
    • /
    • 2006
  • Rapid and highly sensitive determination of nicotine in a PDMS microfluidic channel was investigated using surface enhanced Raman spectroscopy (SERS). A three-dimensional PDMS microfluidic channel was fabricated for this purpose. This channel shows a high mixing efficiency because the transverse and vertical dispersions of the fluid occur simultaneously through the upper and lower zig zag-type blocks. A higher efficiency of mixing could also be obtained by splitting each of the confluent streams into two sub-streams that then joined and recombined. The SERS signal was measured after nicotine molecules were effectively adsorbed onto silver nanoparticles by passing through the three-dimensional channel. A quantitative analysis of nicotine was performed based on the measured peak area at 1030 $cm^{-1}$. The detection limit was estimated to be below 0.1 ppm. In this work, the SERS detection, in combination with a PDMS microfluidic channel, has been applied to the quantitative analysis of nicotine in aqueous solution. Compared to the other conventional analytical methods, the detection sensitivity was enhanced up to several orders of magnitude.

Practical Packaging Technology for Microfluidic Systems (미소유체시스템을 위한 실용적인 패키징 기술)

  • Lee, Hwan-Yong;Han, Song-I;Han, Ki-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.251-258
    • /
    • 2010
  • This paper presents the technology for the design, fabrication, and characterization of a microfluidic system interface (MSI); the purpose of this technology is to enable the integration of complex microfluidic systems. The MSI technology can be applied in a simple manner for realizing complex arrangements of microfluidic interconnects, integrated microvalves for fluid control, and optical windows for on-chip optical processes. A microfluidic system for the preparation of genetic samples was used as the test vehicle to prove the effectiveness of the MSI technology for packaging complex microfluidic systems with multiple functionalities. The miniaturized genetic sample preparation system comprised several functional compartments, including compartments for cell purification, cell separation, cell lysis, solid-phase DNA extraction, polymerase chain reaction, and capillary electrophoresis. Additionally, the functional operation of the solid-phase extraction and PCR thermocycling compartments was demonstrated by using the MSI.

Fabrication of PDMS microlens for optical detection (광학적 검출을 위한 PDMS 마이크로렌즈의 제작)

  • Park, Se-Wan;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.4
    • /
    • pp.15-20
    • /
    • 2009
  • In a detection system based on laser light scattering, focusing an excitation laser beam into a focal point of a channel in a microfluidic chip is important for obtaining the highest excitation intensity, and consequently for obtaining a laser light scattering signal using a photodetector with a high efficiency. In this paper, we present a polydimethylsiloxane (PDMS) microfluidic chip consisting of an integrated PDMS microlens for cell detection based on laser light scattering. We fabricated PDMS microlens for optical detection system by simply putting down on PDMS chips. The PDMS microlens was fabricated by photoresist reflow and replica molding. This fabrication technique is simple and has an excellent property in terms of the microlens and a high-dimensional accuracy. The PDMS microlens integrated on the PDMS microfluidic chip has been verified to improve the laser intensity, and accordingly, the signal-to-noise ratio and sensitivity of laser light scattering detection for red blood cells(RBCs)

Fabrication of Disposable Protein Chip for Simultaneous Sample Detection

  • Lee, Chang-Soo;Lee, Sang-Ho;Kim, Yun-Gon;Oh, Min-Kyu;Hwang, Taek-Sung;Rhee, Young-Woo;Song, Hwan-Moon;Kim, Bo-Yeol;Kim, Yong-Kweon;Kim, Byung-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.455-461
    • /
    • 2006
  • In this study, we have described a method for the fabrication of a protein chip on silicon substrate using hydrophobic thin film and microfluidic channels, for the simultaneous detection of multiple targets in samples. The use of hydrophobic thin film provides for a physical, chemical, and biological barrier for protein patterning. The microfluidic channels create four protein patterned strips on the silicon surfaces with a high signal-to-noise ratio. The feasibility of the protein chips was determined in order to discriminate between each protein interaction in a mixture sample that included biotin, ovalbumin, hepatitis B antigen, and hepatitis C antigen. In the fabrication of the multiplexed assay system, the utilization of the hydrophobic thin film and the microfluidic networks constitutes a more convenient method for the development of biosensors or biochips. This technique may be applicable to the simultaneous evaluation of multiple protein-protein interactions.

Microfluidic Fabrication of Conjugated Polymer Sensor Fibers (미세유동을 이용한 공액 고분자 센서 섬유 제작)

  • Yoo, Imsung;Song, Simon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.10
    • /
    • pp.853-858
    • /
    • 2014
  • We propose a fabrication method for polydiacetylene (PDA)-embedded hydrogel microfibers on a microfluidic chip. These fibers can be applied to the detection of cyclodextrines (CDs), which are a family of sugar and aluminum ions. PDA, a family of conjugated polymers, has unique characteristics when used for a sensor, because it undergoes a blue-to-red color transition and nonfluorescence-to-fluorescence transition in response to environmental stimulation. PDAs have different sensing characteristics depending on the head group of PCDA. By taking advantage of ionic crosslinking-induced hydrogel formation and the 3D hydrodynamic focusing effect on a microfluidic chip, PCDA-EDEA-derived diacetylene (DA) monomer-embedded microfibers were successfully fabricated. UV irradiation of the fibers afforded blue-colored PDA, and the resulting blue PDA fibers underwent a phase transition to red and emitted red fluorescence upon exposure to CDs and aluminum ions. Their fluorescence intensity varied depending on the CDs and aluminum ion concentrations. This phase transition was also observed when the fibers were dried.

Fabrication and Simulation of Fluid Wing Structure for Microfluidic Blood Plasma Separation

  • Choe, Jeongun;Park, Jiyun;Lee, Jihye;Yeo, Jong-Souk
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.196-202
    • /
    • 2015
  • Human blood consists of 55% of plasma and 45% of blood cells such as white blood cell (WBC) and red blood cell (RBC). In plasma, there are many kinds of promising biomarkers, which can be used for the diagnosis of various diseases and biological analysis. For diagnostic tools such as a lab-on-a-chip (LOC), blood plasma separation is a fundamental step for accomplishing a high performance in the detection of a disease. Highly efficient separators can increase the sensitivity and selectivity of biosensors and reduce diagnostic time. In order to achieve a higher yield in blood plasma separation, we propose a novel fluid wing structure that is optimized by COMSOL simulations by varying the fluidic channel width and the angle of the bifurcation. The fluid wing structure is inspired by the inertial particle separator system in helicopters where sand particles are prevented from following the air flow to an engine. The structure is ameliorated in order to satisfy biological and fluidic requirements at the micro scale to achieve high plasma yield and separation efficiency. In this study, we fabricated the fluid wing structure for the efficient microfluidic blood plasma separation. The high plasma yield of 67% is achieved with a channel width of $20{\mu}m$ in the fabricated fluidic chip and the result was not affected by the angle of the bifurcation.

Development and Validation of Numerical Program for Predicting Electrokinetic and Dielectrophoretic Phenomena in a Microchannel (미소채널 내 전기역학 및 유전영동 현상 해석을 위한 수치 프로그램 개발 및 검증)

  • Kwon, Jae-Sung;Maeng, Joo-Sung;Song, Simon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.320-329
    • /
    • 2007
  • Electrokinesis and dielectrophoresis are important transport phenomena produced by external electric field applied to a microchannel containing a conductive fluid. We developed a CFD code to predict electrokinetic and dielectrophoretic flows in a microchannel with a uniform circular post array. Using the code, we calculated particle velocities driven by electrokinesis and dielectrophoresis, and conducted Monte Carlo simulations to visualize the particle motions. The code was validated by comparing the results with those from previous studies in literature. At a low electric field, electrokinesis and diffusion is the dominant transport mechanism. At a moderate electric field, dielectrophoresis is balanced with electrokinesis and diffusion, resulting in flowing filaments of particles in the microchannels. However, dielectrophoresis overwhelms the flow at a high electric field and traps particles locally. These results provide useful insight for optimizing design parameters of a microfluidic chip for biochemical analysis, especially for development of on-chip sample pretreatment techniques using electrokinetic and dielectrophoretic effects.

Feasibility of On-chip Detection of Endotoxin by LAL Test

  • Lee, Eun-Kyu;Suh, Chang-Woo;Hwang, Sang-Youn;Park, Hyo-Jin;Seong, Gi-Hoon;Ahn, Yoo-Min;Kim, Yang-Sun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.2
    • /
    • pp.132-136
    • /
    • 2004
  • The LAL (Limulus amebocyte lysate) test for the detection and quantification of endotoxin is based on the gelation reaction between endotoxin and LAL from a blood extract of Limulus polyphemus. The test is labor intensive, requiring dedicated personnel, a relatively long reaction time (approximately 1 h), relatively large volumes of samples and reagents and the detection of the end-point is rather subjective. To solve these problems, a miniaturized LOC (lab-on-a-chip) prototype, 62mm (L) ${\times}$ 18 mm (W), was fabricated using PDMS (polydimethylsiloxane) bonded to glass. Using this prototype, in which 2mm (W) ${\times}$ 44.3mm (L) ${\times}$ 100 $\mu\textrm{m}$ (D) microfluidic channel was constructed, turbidometric and chromogenic assay detection methods were compared, and the chromogenic method was found the most suitable for a small volume assay. In this assay, the kinetic-point method was more accurate than the end-point method. The PDMS chip thickness was found to be minimized to around 2 mm to allow sufficient light transmittance, which necessitated the use of a glass slide bonding for chip rigidity. Due to this miniaturization, the test time was reduced from 1 h to less than 10 min, and the sample volume could be reduced from 100 to ca. 4.4 ${\mu}$L. In summation, this study suggested that the LOC using the LAL test principle could be an alternative as a semi-automated and reliable method for the detection of endotoxin.