DOI QR코드

DOI QR Code

Microfluidic Fabrication of Conjugated Polymer Sensor Fibers

미세유동을 이용한 공액 고분자 센서 섬유 제작

  • Yoo, Imsung (Dept. of Mechanical Convergence Engineering, Hanyang Univ.) ;
  • Song, Simon (Dept. of Mechanical Convergence Engineering, Hanyang Univ.)
  • 유임성 (한양대학교 융합기계공학과) ;
  • 송시몬 (한양대학교 융합기계공학과)
  • Received : 2014.05.20
  • Accepted : 2014.06.30
  • Published : 2014.10.01

Abstract

We propose a fabrication method for polydiacetylene (PDA)-embedded hydrogel microfibers on a microfluidic chip. These fibers can be applied to the detection of cyclodextrines (CDs), which are a family of sugar and aluminum ions. PDA, a family of conjugated polymers, has unique characteristics when used for a sensor, because it undergoes a blue-to-red color transition and nonfluorescence-to-fluorescence transition in response to environmental stimulation. PDAs have different sensing characteristics depending on the head group of PCDA. By taking advantage of ionic crosslinking-induced hydrogel formation and the 3D hydrodynamic focusing effect on a microfluidic chip, PCDA-EDEA-derived diacetylene (DA) monomer-embedded microfibers were successfully fabricated. UV irradiation of the fibers afforded blue-colored PDA, and the resulting blue PDA fibers underwent a phase transition to red and emitted red fluorescence upon exposure to CDs and aluminum ions. Their fluorescence intensity varied depending on the CDs and aluminum ion concentrations. This phase transition was also observed when the fibers were dried.

본 연구는 미세유동칩을 이용하여 당의 일종인 cyclodextrine(CD)과 알루미늄 이온 검출이 가능한 polydiacetylene(PDA)이 집적된 미세섬유를 제작하는 방법을 제안한다. PDA는 공액 고분자의 일종으로 외부 자극에 대해 blue-to-red 색 전이 및 형광이 발현되며 원료가 되는 PCDA의 head group에 따라 자극에 대한 감도가 달라지는 매력적인 특성을 가지고 있다. 따라서, 이온간 교차결합으로 야기되는 하이드로젤 형성 메커니즘과 미세유동칩 내 3차원 유체집속효과를 활용하여 PCDA-EDEA 기반의 diacetylene(DA) 단량체가 집적된 센서 섬유를 제작하였다. 섬유 내 DA 단량체는 UV에 의해 파란색의 PDA로 상 전이가 일어나며 CD나 알루미늄 이온에 반응하여 붉은색으로의 색 전이 및 붉은 형광이 발현되는 특성을 보였다. 또한 형광세기는 CD와 금속 이온의 농도에 따라 변화하는 특성을 나타내었다. 이는 미세섬유가 건조된 경우에도 동일하게 관찰되었다.

Keywords

References

  1. Wegner, G., 1972, "Topochemical Polymerization of Monomers with Conjugated Triple Bonds," Die Makromolekulare Chemie, Vol. 154, No. 1, pp. 35-48. https://doi.org/10.1002/macp.1972.021540103
  2. Sun, A., Lauher, J. W. and Goroff, N. S., 2006, "Preparation of Poly (diiododiacetylene), an ordered conjugated Polymer of Carbon and Iodine," Science, Vol. 312, No. 5776, pp. 1030-1034. https://doi.org/10.1126/science.1124621
  3. Okawa, Y. and Aono, M., 2001, "Materials Science:Nanoscale Control of Chain Polymerization," Nature, Vol. 409, No. 6821, pp. 683-684. https://doi.org/10.1038/35055625
  4. Charych, D. H., Nagy, J. O., Spevak, W. and Bednarski, M. D., 1993, "Direct Colorimetric Detection of a Receptor-ligand Interaction by a Polymerized Bilayer Assembly," Science, Vol. 261, No. 5121, pp. 585-588. https://doi.org/10.1126/science.8342021
  5. Ma, G., Muller, A. M., Bardeen, C. J. and Cheng, Q., 2006, "Self‐Assembly Combined with Photopolymerization for the Fabrication of Fluorescence "Turn‐On" Vesicle Sensors with Reversible "On-Off" Switching Properties," Advanced Materials, Vol. 18, No. 1, pp. 55-60. https://doi.org/10.1002/adma.200501455
  6. Kolusheva, S., Molt, O., Herm, M., Schrader, T. and Jelinek, R., 2005, "Selective Detection of Catecholamines by Synthetic Receptors Embedded in Chromatic Polydiacetylene Vesicles," Journal of the American Chemical Society, Vol. 127, No. 28, pp. 10000-10001. https://doi.org/10.1021/ja052436q
  7. Yoon, B., Lee, S. and Kim, J.-M., 2009, "Recent Conceptual and Technological Advances in Polydiacetylene-based Supramolecular Chemo-Sensors," Chemical Society Reviews, Vol. 38, No. 7, pp. 1958-1968. https://doi.org/10.1039/b819539k
  8. Gill, I. and Ballesteros, A., 2003, "Immunoglobulin- Polydiacetylene Sol-Gel Nanocomposites as Solid‐State Chromatic Biosensors," Angewandte Chemie, Vol. 115, No. 28, pp. 3386-3389. https://doi.org/10.1002/ange.200351290
  9. Ahn, D. J. and Kim, J.-M., 2008, "Fluorogenic Polydiacetylene Supramolecules: Immobilization, Micropatterning, and Application to Label-free Chemosensors," Accounts of chemical research, Vol. 41, No. 7, pp. 805-816. https://doi.org/10.1021/ar7002489
  10. Yoon, J., Chae, S. K. and Kim, J.-M., 2007, "Colorimetric Sensors for Volatile Organic Compounds (VOCs) Based on Conjugated Polymer-embedded Electrospun Fibers," Journal of the American Chemical Society, Vol. 129, No. 11, pp. 3038-3039. https://doi.org/10.1021/ja067856+
  11. Kim, J.-M., Lee, Y. B., Yang, D. H., Lee, J.-S., Lee, G. S. and Ahn, D. J., 2005, "A Polydiacetylene-based Fluorescent Sensor Chip," Journal of the American Chemical Society, Vol. 127, No. 50, pp. 17580-17581. https://doi.org/10.1021/ja0547275
  12. Lee, J., Kim, H.-J. and Kim, J., 2008, "Polydiacetylene Liposome Arrays for Selective Potassium Detection," Journal of the American Chemical Society, Vol. 130, No. 15, pp. 5010-5011. https://doi.org/10.1021/ja709996c
  13. Lee, C. H., Oh, E.-H., Kim, J.-M. and Ahn, D. J., 2008, "Immobilization of Polydiacetylene Vesicles on Cellulose Acetate Butyrate (CAB)-coated Substrates for Selfassembled Supramolecular Sensor Arrays," Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 313, No. pp. 500-503.
  14. Eo, S. H., Song, S., Yoon, B. and Kim, J. M., 2008, "A Microfluidic Conjugated‐Polymer Sensor Chip," Advanced Materials, Vol. 20, No. 9, pp. 1690-1694. https://doi.org/10.1002/adma.200703007
  15. Jang, Y. S., Yoon, B. and Kim, J.-M., 2011, "Colorimetric Detection of Aluminium Ion based on Conjugated Polydiacetylene Supramolecules," Macromolecular Research, Vol. 19, No. 1, pp. 97-99. https://doi.org/10.1007/s13233-011-0102-y
  16. Yoo, I., Song, S., Yoon, B. and Kim, J. M., 2012, "Size‐Controlled Fabrication of Polydiacetylene‐Embedded Microfibers on a Microfluidic Chip," Macromolecular rapid communications, Vol. 33, No. 15, pp. 1256-1261. https://doi.org/10.1002/marc.201200073
  17. Yoon, B., Ham, D. Y., Yarimaga, O., An, H., Lee, C. W. and Kim, J. M., 2011, "Inkjet Printing of Conjugated Polymer Precursors on Paper Substrates for Colorimetric Sensing and Flexible Electro-thermochromic Display," Advanced Materials, Vol. 23, No. 46, pp. 5492-5497. https://doi.org/10.1002/adma.201103471
  18. Szejtli, J., 1998, "Introduction and General Overview of Cyclodextrin Chemistry," Chemical reviews, Vol. 98, No. 5, pp. 1743-1754. https://doi.org/10.1021/cr970022c