Browse > Article
http://dx.doi.org/10.5757/ASCT.2015.24.5.196

Fabrication and Simulation of Fluid Wing Structure for Microfluidic Blood Plasma Separation  

Choe, Jeongun (School of Integrated Technology, Yonsei University)
Park, Jiyun (School of Integrated Technology, Yonsei University)
Lee, Jihye (School of Integrated Technology, Yonsei University)
Yeo, Jong-Souk (School of Integrated Technology, Yonsei University)
Publication Information
Applied Science and Convergence Technology / v.24, no.5, 2015 , pp. 196-202 More about this Journal
Abstract
Human blood consists of 55% of plasma and 45% of blood cells such as white blood cell (WBC) and red blood cell (RBC). In plasma, there are many kinds of promising biomarkers, which can be used for the diagnosis of various diseases and biological analysis. For diagnostic tools such as a lab-on-a-chip (LOC), blood plasma separation is a fundamental step for accomplishing a high performance in the detection of a disease. Highly efficient separators can increase the sensitivity and selectivity of biosensors and reduce diagnostic time. In order to achieve a higher yield in blood plasma separation, we propose a novel fluid wing structure that is optimized by COMSOL simulations by varying the fluidic channel width and the angle of the bifurcation. The fluid wing structure is inspired by the inertial particle separator system in helicopters where sand particles are prevented from following the air flow to an engine. The structure is ameliorated in order to satisfy biological and fluidic requirements at the micro scale to achieve high plasma yield and separation efficiency. In this study, we fabricated the fluid wing structure for the efficient microfluidic blood plasma separation. The high plasma yield of 67% is achieved with a channel width of $20{\mu}m$ in the fabricated fluidic chip and the result was not affected by the angle of the bifurcation.
Keywords
Microfluidics; Lab on a chip; Blood plasma separation; Diagnostics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. A. Al-Soud, and P. Radstrom, J. Clin. Microbiol. 39, 485 (2001).   DOI   ScienceOn
2 P. Belgrader, W. Benett, D. Hadley, and J. Richards, Science 284, 449 (1999).   DOI   ScienceOn
3 S. Haeberle, and R. Zengerle, Lab. Chip 7, 1094 (2007).   DOI   ScienceOn
4 F. B. Myers, and L. P. Lee, Lab. Chip 8, 2015 (2008).   DOI   ScienceOn
5 P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, Nature 442, 412 (2006).   DOI   ScienceOn
6 B. Weigl, G. Domingo, P. LaBarre, and J. Gerlach, Lab. Chip 8, 1999 (2008).   DOI   ScienceOn
7 S. Roy, J. H. Soh, and Z. Gao, Lab. Chip 11, 1886 (2011).   DOI   ScienceOn
8 W. Sheng, O. O. Ogunwobi, T. Chen, J. Zhang, T. J. George, C. Liu, and Z. H. Fan, Lab. Chip 14, 89 (2014).   DOI
9 V. Linder, E. Verpoorte, N. F. de Rooij, H. Sigrist, and W. Thormann, Electrophoresis 23, 740 (2002).   DOI
10 T. A. Crowley, and V. Pizziconi, Lab. Chip 5, 922 (2005).   DOI   ScienceOn
11 M. Kersaudy-Kerhoas, R. Dhariwal, M. P. Desmulliez, and L. Jouvet, Microfluid. Nanofluidics 8, 105 (2010).   DOI
12 F. Saeed, and A. Z. Al-Garni, J. Aircraft 44, 1150 (2007).   DOI   ScienceOn
13 S. Kahp-Yang, J. Korean. Vac. Soc. 16, 65 (2007).   DOI   ScienceOn
14 S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, J. Microelectromech. Syst. 14, 590 (2005).   DOI   ScienceOn
15 Z. Geng, Y. Ju, W. Wang, Sensor and Actuator B: Chemical, 180, 122 (2013)   DOI
16 R. Ramji, C. F. Cheong, H. Hirata, A. R. A. Rahman, and C. T. Lim, Small 11, 943 (2015).   DOI   ScienceOn
17 N. Wongkaew, P. He, V. Kurth, W. Surareungchai, and A. J. Baeumner, Anal. Bioanal. Chem. 405, 5965 (2013).   DOI   ScienceOn
18 K. Zhang, L.-B. Zhao, S.-S. Guo, B.-X. Shi, T.-L. Lam, Y.-C. Leung, Y. Chen, X.-Z. Zhao, H. L. Chan, and Y. Wang, Biosens. Bioelectron. 26, 935 (2010).   DOI   ScienceOn
19 W.-Y. Chang, C.-H. Chu, and Y.-C. Lin, IEEE Sensors J. 8, 495 (2008).   DOI   ScienceOn
20 G. G. Nestorova, V. L. Kopparthy, N. D. Crews, and E. J. Guilbeau, Anal. Methods 7, 2055 (2015).   DOI