Browse > Article

Fabrication of Disposable Protein Chip for Simultaneous Sample Detection  

Lee, Chang-Soo (Department of Chemical and Biological Engineering, Chungnam National University)
Lee, Sang-Ho (School of Electrical Engineering and Computer Science, Seoul National University)
Kim, Yun-Gon (School of Chemical and Biological Engineering and Institute of Molecular Biology and Genetics, Seoul National University)
Oh, Min-Kyu (Department of Chemical and Biological Engineering, Korea University)
Hwang, Taek-Sung (Department of Chemical and Biological Engineering, Chungnam National University)
Rhee, Young-Woo (Department of Chemical and Biological Engineering, Chungnam National University)
Song, Hwan-Moon (Department of Chemical and Biological Engineering, Chungnam National University)
Kim, Bo-Yeol (Department of Chemical and Biological Engineering, Chungnam National University)
Kim, Yong-Kweon (School of Electrical Engineering and Computer Science, Seoul National University)
Kim, Byung-Gee (School of Chemical and Biological Engineering and Institute of Molecular Biology and Genetics, Seoul National University)
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.11, no.5, 2006 , pp. 455-461 More about this Journal
Abstract
In this study, we have described a method for the fabrication of a protein chip on silicon substrate using hydrophobic thin film and microfluidic channels, for the simultaneous detection of multiple targets in samples. The use of hydrophobic thin film provides for a physical, chemical, and biological barrier for protein patterning. The microfluidic channels create four protein patterned strips on the silicon surfaces with a high signal-to-noise ratio. The feasibility of the protein chips was determined in order to discriminate between each protein interaction in a mixture sample that included biotin, ovalbumin, hepatitis B antigen, and hepatitis C antigen. In the fabrication of the multiplexed assay system, the utilization of the hydrophobic thin film and the microfluidic networks constitutes a more convenient method for the development of biosensors or biochips. This technique may be applicable to the simultaneous evaluation of multiple protein-protein interactions.
Keywords
protein chip; protein patterning; microchannel; simultaneous detection;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Borrebaeck, C. A. (2006) Antibody microarray-based on-coproteomics. Expert Opin. Biol. Ther. 6: 833-838   DOI   ScienceOn
2 Bulyk, M. L. (2006) DNA microarray technologies for measuring protein-DNA interactions. Curr. Opin. Biotechnol. 17: 422-430   DOI   ScienceOn
3 Lee, C. S., S. H. Lee, S. S. Park, Y. K. Kim, and B. G. Kim (2003) Protein patterning on silicon-based surface using background hydrophobic thin film. Biosens. Bioelectron. 18: 437-444   DOI   ScienceOn
4 Preininger, C., U. Sauer, W. Kern, and J. Dayteg (2004) Photoactivatable copolymers of vinylbenzyl thiocyanate as immobilization matrix for biochips. Anal. Chem. 76: 6130-6136   DOI   ScienceOn
5 Hui, A. Y., G. Wang, B. Lin, and W. T. Chan (2005) Microwave plasma treatment of polymer surface for irreversible sealing of microfluidic devices. Lab Chip 5: 1173-1177   DOI   ScienceOn
6 Purvis, D., O. Leonardova, D. Farmakovsky, and V. Cher-kasov (2003) An ultrasensitive and stable potentiometric immunosensor. Biosens. Bioelectron. 18: 1385-1390   DOI   ScienceOn
7 Cha, T., A. Guo, Y. Jun, D. Pei, and X. Y Zhu (2004) Immobilization of oriented protein molecules on poly (ethylene glycol)-coated Si(l11). Proteomics 4: 1965-1976   DOI   ScienceOn
8 Richalet-Secordel, P. M., F. Poisson, and M. H. Van Re-genmortel (1996) Uses of biosensor technology in the development of probes for viral diagnosis. Clin. Diagn. Virol. 5: 111-119   DOI   ScienceOn
9 Dupuy, A. M., S. Lehmann, and J. P. Cristol (2005) Protein biochip systems for the clinical laboratory. Clin. Chem. Lab. Med. 43: 1291-1302   DOI   ScienceOn
10 Lee, C. S. and B. G. Kim (2002) Improvement of protein stability in protein microarrays. Biotechnol. Lett. 24: 839-844   DOI   ScienceOn
11 Choi, J. W., Y. S. Nam, and M. Fujihira (2004) Nanoscale fabrication of biomolecular layer and its application to biodevices. Biotechnol. Bioprocess Eng. 9: 76-85   DOI   ScienceOn
12 Wilkop, T., Z. Wang, and Q. Cheng (2004) Analysis of micro-contact printed protein patterns by SPR imaging with a LED light source. Langmuir 20: 11141-11148   DOI   ScienceOn
13 Lee, C. S., S. H. Lee, Y. G. Kim., C. H. Choi., Y. K. Kim, and B. G. Kim (2006) Biochemical reactions on a microfluidic chip based on a precise fluidic handling method at the nanoliter scale. Biotechnol. Bioprocess Eng. 11: 146-153   과학기술학회마을   DOI   ScienceOn
14 Lee, W. E., H. G. Thompson, J. G. Hall, and D. E. Bader (2000) Rapid detection and identification of biological and chemical agents by immunoassay, gene probe assay and enzyme inhibition using a silicon-based biosensor. Biosens. Bioelectron. 14: 795-804   DOI   ScienceOn
15 Marquette, C. A. and L. J. Blum (2006) State of the art and recent advances in immunoanalytical systems. Biosens. Bioelectron. 21: 1424-1433   DOI   ScienceOn
16 Sato, K., A. Egami, T. Odake, M. Tokeshi, M. Aihara, and T. Kitamori (2006) Monitoring of intercellular messengers released from neuron networks cultured in a microchip. J. Chromatogr. A 1111: 228-232   DOI   ScienceOn
17 Choi, W. J. and J. K. Park (2006) A bio-fluiclic device for adaptive sample pretreatment and its application to measurements of Escherichia coli concentrations. Biotechnol. Bioprocess Eng. 11: 54-60   과학기술학회마을   DOI   ScienceOn
18 Kim, C. G., J. J. Lee, D. Y. Jung, J. Jeon, H. S. Heo, H. C. Kang, J. H. Shin, Y. S. Cho, K. J. Cha, C. G. Kim, B. R. Do, K. S. Kim, and H. S. Kim (2006) Profiling of differentially expressed genes in human stem cells by cDNA microarray. Mol. Cells 21: 343-355
19 Lee, S. H., C. S. Lee, D. S. Shin, B. G. Kim, Y. S. Lee, and Y. K. Kim (2004) Micro protein patterning using a lift-off process with fluorocarbon thin film. Sens. Actuators B Chem. 99: 623-632   DOI   ScienceOn
20 Schmalenberg, K. E., H. M. Buettner, and K. E. Uhrich (2004) Microcontact printing of proteins on oxygen plasma-activated poly (methyl methacrylate). Biomaterials 25: 1851-1857   DOI   ScienceOn
21 Park, S. S., H. S. Joo, S. I. Cho, M. S. Kim, Y. K. Kim, and B. G. Kim (2003) Multi-step reactions on microchip platform using nitrocellulose membrane reactor. Biotechnol. Bioprocess Eng. 8: 257-262   DOI   ScienceOn
22 Bentzen, E. L., I. D. Tomlinson, f. Mason, P. Gresch, M. R. Warnement, D. Wright, E. Sanders-Bush, R. Blakely, and S. J. Rosenthal (2005) Surface modification to reduce nonspecific binding of quantum dots in live cell assays. Bioconjug. Chem. 16: 1488-1494   DOI   ScienceOn
23 Lee, C. S., S. H. Lee, Y. G. Kim, J. H. Lee, Y. K. Kim, and B. G. Kim (2006) A method of binding kinetics of a ligand to micropatterned proteins on a microfluidic chip. Biosens. Bioelectron. In press