Browse > Article
http://dx.doi.org/10.12989/sss.2013.12.1.001

In situ analysis of capturing dynamics of magnetic nanoparticles in a microfluidic system  

Munir, Ahsan (Department of Chemical Engineering, Worcester Polytechnic Institute)
Zhu, Zanzan (Department of Chemical Engineering, Worcester Polytechnic Institute)
Wang, Jianlong (College of Food Science & Engineering, Northwest A&F University)
Zhou, H. Susan (Department of Chemical Engineering, Worcester Polytechnic Institute)
Publication Information
Smart Structures and Systems / v.12, no.1, 2013 , pp. 1-22 More about this Journal
Abstract
Magnetic nanoparticle based bioseparation in microfluidics is a multiphysics phenomenon that involves interplay of various parameters. The ability to understand the dynamics of these parameters is a prerequisite for designing and developing more efficient magnetic cell/bio-particle separation systems. Therefore, in this work proof-of-concept experiments are combined with advanced numerical simulation to design and optimize the capturing process of magnetic nanoparticles responsible for efficient microfluidic bioseparation. A low cost generic microfluidic platform was developed using a novel micromolding method that can be done without a clean room techniques and at much lower cost and time. Parametric analysis using both experiments and theoretical predictions were performed. It was found that flow rate and magnetic field strength greatly influence the transport of magnetic nanoparticles in the microchannel and control the capturing efficiency. The results from mathematical model agree very well with experiments. The model further demonstrated that a 12% increase in capturing efficiency can be achieved by introducing of iron-grooved bar in the microfluidic setup that resulted in increase in magnetic field gradient. The numerical simulations were helpful in testing and optimizing key design parameters. Overall, this work demonstrated that a simple low cost experimental proof-of-concept setup can be synchronized with advanced numerical simulation not only to enhance the functional performance of magneto-fluidic capturing systems but also to efficiently design and develop microfluidic bioseparation systems for biomedical applications.
Keywords
microfluidics; magnetic nanoparticles; bioseparation; lab-on-a-chip; mathematical modelin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Smistrup, K., Torsten, L.O., Hansen, M.F. and Tang, P.T. (2006), "Microfluidic magnetic separator using an array of soft magnetic elements", J. Appl. Phys., 99(8), 08P102 - 08P102-3.   DOI
2 Sullivan, S.P., Akpa, B.S., Matthews, S.M., Fisher, A.C., Gladden, L.F. and Johns, M.L. (2007), "Simulation of miscible diffusive mixing in microchannels", Sensor. Actuat. B Chem., 123, 1142-1152.   DOI   ScienceOn
3 Suzuki, H. , Ho, C.M. and Kasagi, N. (2004), "A chaotic mixer for magnetic bead-based micro cell sorter", J. Microelectromech. S., 13 (5), 779-790.   DOI   ScienceOn
4 Yellen, B.B. and Friedman, G. (2004), "Programmable assembly of colloidal particles using magnetic micro-well templates", Langmuir, 20, 2553.   DOI   ScienceOn
5 Xia, N., Hunt, T.P., Mayers, B.T., Alsberg, E.,Whitesides, G.M., Westervelt, R.M., Ingber, D.E. (2006), "Combined microfluidic- icromagnetic separation of living cells in continuous flow", Biomed. Microdevices, 8(4), 299-308..   DOI   ScienceOn
6 Hayes, M.A., Polson, M.A., Phayre, A.N. and Garcia, A.A. (2001), "Flow-based microimmunoassay", Anal. Chem., 73(24), 5896-5902.   DOI   ScienceOn
7 Kim, M.C., Kim, D.K., Lee, S.H., Amin, M.S., Park, I.H., Kim, C.J. Zahn, M. (2006), "Dynamic characteristics of superparamagnetic iron oxide nanoparticles in a viscous fluid under an external magnetic field", IEEE T. Magn., 42(4), 979-982.   DOI   ScienceOn
8 Lee, C.S., Lee, H. and Westervelt, R.M. (2001), "Microelectromagnets for the control of magnetic nanoparticles", Appl. Phys. Lett., 79 (20), 3308.   DOI   ScienceOn
9 Lehmann, U., Vandevyver, C., Parashar, V.K. and Gijs, M.A.M. (2006), "Droplet-based DNA purification in a magnetic lab-on-a-chip", Angewandte Chemie-Int. Ed., 45(19), 3062-3067.   DOI   ScienceOn
10 Manz, A., Graber, N. and Widmer, H.M. (1990), "Miniaturized total chemical-analysis systems - a novel concept for chemical sensing", Sensor. Actuat. B Chem., 1(1-6), 244-248.   DOI   ScienceOn
11 McCloskey, K.E., Chalmers, J.J. and Zborowski, M. (2000), "Magnetophoretic mobilities correlate to antibody binding capacities", Cytometry, 40, 307-315.   DOI
12 Pamme, N. (2006), "Magnetism and microfluidics", Lab Chip., 6, 24-38.   DOI   ScienceOn
13 Pankhurst, Q.A., Connolly, J., Jones, S.K. and Dobson, J. (2003), "Applications of magnetic nanoparticles in biomedicine", J. Phys. D Appl. Phys., 36(13), R167-R181.   DOI   ScienceOn
14 Rida, A. and Gijs, M.A.M. (2004), "Dynamics of magnetically retained supraparticle structures in a liquid flow", Appl. Phys. Lett., 85, 4986.
15 Rosensweig, R. (1997), Ferrohydrodynamics. New York: Dover Publication Inc.
16 Choi, J.W., Oh, K.W., Thomas, J.H., Heineman, W.R., Halsall, H.B., Nevin, J.H., Helmicki, A.J., Hendersona, H.T. and Ahna, C.H. (2002), "An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities", Lab Chip., 2, 27-30.   DOI   ScienceOn
17 Shih, P.H., Shiu, J.Y., Lin, P.C., Lin, C.C., Veres, T. and Chen, P. (2008), "On chip sorting of bacterial cells using sugar- encapsulated magnetic nanoparticles", J. Appl. Phys., 103(7).
18 Smistrup, K., Kjeldsen, B.G., Reimers, J.L., Dufva, M., Petersena, J. and Hansena, M.F. (2005), "On-chip magnetic bead microarray using hydrodynamic focusing in a passive magnetic separator", Lab Chip., 5, 1315.   DOI   ScienceOn
19 Bu, M.Q., Christensen, T.B., Smistrup, K., Wolff, A. and Hansen, M.F. (2008), "Characterization of a microfluidic magnetic bead separator for high-throughput applications", Sensor. Actuat. A-Phys., 145-146, 430-436.   DOI   ScienceOn
20 Clime, L., Boris, L.D. and Teodor, V. (2007), "Dynamics of superparamagnetic and ferromagnetic nano-objects in continuous-flow microfluidic devices", IEEE T. Magn., 2929-2931.
21 Deng, T., Prentiss, M. and Whitesides, G.M. (2002), "Fabrication of magnetic microfiltration systems using soft lithography", Appl. Phys. Lett., 80(3), 461-463.   DOI   ScienceOn
22 Furlani, E.P. (2001), Permanent magnet and electromechanical devices : materials, analysis and applications, New York: Academic Press Inc.
23 Furlani, E. P. (2006), "Analysis of particle transport in a magnetophoretic microsystem", J. Appl. Phys., 99.
24 Furlani, E.P. and Ng, K.C. (2006), "Analytical model of magnetic nanoparticle transport and capture in the microvasculature", Phys. Rev. E., 73.
25 Furlani, E.P. (2010), "Magnetic biotransport: analysis and applications", Material, 3, 2412-2446.   DOI
26 Berry, C.C. and Curtis, A.S.G. (2003), "Functionalisation of magnetic nanoparticles for applications in biomedicine", J. Phys. D Appl. Phys., 36, R198-R206.   DOI   ScienceOn
27 Gerber, R., Takayasu, M. and Friedlander, F.J. (1983), "Generalization of HGMS theory: the capture of ultrafine particles", IEEE T. Magn. 319, 2115-2117.
28 Gijs, M.A.M. (2004), "Magnetic bead handling on-chip: new opportunities for analytical applications", Microfluid. Nanofluid., 1, 22-40.
29 Hahn, Y.K., Jin, Z.W., Kang, J.H., Oh, E.K., Han, M.K., Kim, H.S., Jang, J.T., Lee, J.H., Cheon, J.W., Kim, S.H. Park, H.S. and Park, J.K. (2007), "Magnetophoretic immunoassay of allergen-specific IgE in an enhanced magnetic field gradient", Anal. Chem., 79(6), 2214- 2220.   DOI   ScienceOn
30 Ahn, C.H., Allen, M.G., Trimmer, W., Jun, Y.N. and Erramilli, S. (1996), "A fully integrated micromachined magnetic particle separator", J. Microelectromech. S., 5, 151-158.   DOI   ScienceOn
31 Brauer, J.R. (2007), "Finite-element computation of magnetic force densities on permeable particles in magnetic separators", IEEE T. Magn., 43, 3483-3487.   DOI   ScienceOn