Browse > Article
http://dx.doi.org/10.3795/KSME-B.2010.34.3.251

Practical Packaging Technology for Microfluidic Systems  

Lee, Hwan-Yong (Dept. of Nano Engineering, Inje Univ.)
Han, Song-I (Dept. of Nano Engineering, Inje Univ.)
Han, Ki-Ho (Dept. of Nano Engineering, Inje Univ.)
Publication Information
Transactions of the Korean Society of Mechanical Engineers B / v.34, no.3, 2010 , pp. 251-258 More about this Journal
Abstract
This paper presents the technology for the design, fabrication, and characterization of a microfluidic system interface (MSI); the purpose of this technology is to enable the integration of complex microfluidic systems. The MSI technology can be applied in a simple manner for realizing complex arrangements of microfluidic interconnects, integrated microvalves for fluid control, and optical windows for on-chip optical processes. A microfluidic system for the preparation of genetic samples was used as the test vehicle to prove the effectiveness of the MSI technology for packaging complex microfluidic systems with multiple functionalities. The miniaturized genetic sample preparation system comprised several functional compartments, including compartments for cell purification, cell separation, cell lysis, solid-phase DNA extraction, polymerase chain reaction, and capillary electrophoresis. Additionally, the functional operation of the solid-phase extraction and PCR thermocycling compartments was demonstrated by using the MSI.
Keywords
Microfluidic-System-Interface(MSI); Microvalves; Packaging; Stereolithography;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Man, P. F., Jones, D. K. and Mastrangelo, C. H., 1997, "Microfluidic Plastic Capillaries on Silicon Substrates: A New Inexpensive Technology for Bioanalysis Chip," Proc. IEEE Micro Electro Mechanical Systems Conference (MEMS), Nagoya, Japan, pp. 311-316.
2 Grover, W. H., Skelley, A. M., Lui, C. N., Lagally, E. T. and Mathies, R. A., 2003, "Monolithic Membrane Valve and Diaphragm Pumps for Practical Large-Scale Integrated into Glass Microfluidic Devices," Sens. Actuators B, Vol. 89, No. 3, pp. 315-323.   DOI   ScienceOn
3 Verlee, D., Alcock, A., Clark, G., Huang, T. M., Kantor, S., Nemcek, T., Norlie, J., Pan, J., Walsworth, F. and Wong, S. T., 1996, "Fluid Circuit Technology: Integrated Interconnect Technology for Miniature Fluidic Device," in Tech. Dig. Solid-State Sensor and Actuator, Hilton Head, SC, pp. 9-14
4 Yao, T. -J., Lee, S., Fang, W. and Tai, Y.-C., 2000, "Micromachined Rubber O-ring Micro-Fluidic Couplers," in Proc. IEEE Micro Electro Mechanical Systems Conf. (MEMS), MiyaZaki, Japan, pp. 624-627.
5 Terry, S. C., Jerman, J. H. and Angell, J. B., 1979, "A Gas Chromatographic Air Analyzer Fabricated on Silicon Wafer," IEEE Trans. Electron. Devices, Vol. ED-26, No. 12, pp. 1880-1886
6 Bakajin, O., Duke, T. A. J., Tegenfeldt. J., Chou, C.-F., Chan, S. S., Austin, R. H. and Cox, E. C., 2001, "Separation of 100-Kilobase DNA Molecules in 10 Seconds," Anal. Chem., Vol. 73, No. 24, pp. 6053-6056.   DOI   ScienceOn
7 Huang, Y., Joo, S., Duhon, M., Heller, M., Wallace, B. and Xu, X., 2002, "Dielectrophoretic Cell Separation and Gene Expression Profiling on Microelectronic Chip Arrays,'' Anal. Chem., Vol. 74, No 14, pp. 3362-3371.   DOI   ScienceOn
8 Fu, A. Y., Spence, C., Scherer, A., Arnold, F. H. and Quake, S. R., 1999, "A Microfabricated Fluorescence-Activated Cell Sorter," Nat. Biotechnol., Vol. 17, No. 11, pp. 1109-1111.   DOI   ScienceOn
9 Han, K.-H. and Frazier, A. B., 2006, "Paramagnetic Capture Mode Magnetophoretic Microseparator for High Efficiency Blood Cell Separations," Lab Chip, Vol. 6, pp. 265-273   DOI   ScienceOn
10 Chang, K. S., Tanaka, S., Chang, C. L. and Esashi, M., 2003, "Combustor-Integrated Micro-Fuel Processor with Suspended Membrane Structure," Tech. Dig. 12th Int. Conf. Solid-State Sensors and Actuators Workshop(Transducers), Boston, USA, pp. 653-638.
11 Wang, Y.-C., Choi, M. H. and Han, J., 2004, "Two-Dimensional Protein Separation with Advanced Sample and Buffer Isolation using Microfluidic Valves," Anal. Chem., Vol. 76, No. 15, pp. 4426-4431.   DOI   ScienceOn
12 Lee, S., Jeong, W. and Beebe, D. J., 2003, "Microfluidic Valve with Cored Glass Microneedle for Microinjection," Lab Chip, Vol. 3, No. 3, pp. 164-167.   DOI   ScienceOn
13 Han, A., Wang, O., Graff, M., Mohanty, S. K., Edwards, T. L., Han, K.-H. and Frazier, A. B., 2003, "A Multi-Layer Plastic/Glass Microfluidic Systems Containing Electrical and Mechanical Functionality," Lab Chip, Vol. 3, No. 3, pp. 150-157.   DOI   ScienceOn
14 Fredrickson, C. K. and Fan, Z. H., 2004, "Macro-to-Micro Interfaces for Microfluidic Devices," Lab Chip, Vol. 4, No. 6, pp. 526-533.   DOI   ScienceOn
15 Stachowiak. T. B., Bohr, T., Hilder, E. F., Peterson, D. S., Yi, M., Svec, F. and Fréchet, J. M. J., 2003, "Fabrication of Porous Polymer Monoliths Covalently Attached to the Walls of Channels in Plastic Microdevices," Electrophoresis, Vol. 24, No. 21, pp. 3689-3693.   DOI   ScienceOn
16 Pattekar, A. V. and Kothare, M. V., 2003, "Novel Microfluidic Interconnectors for High Temperature and Pressure Application," J. Micromech. Microeng., Vol. 13, No. 2, pp 337-345.   DOI   ScienceOn
17 Chen, H., Acharya, D., Gajraj, A. and Meiners, J.-C., 2003, "Robust Interconnects and Packaging for Microfluidic Elastomeric Chips," Anal. Chem., Vol. 75, No. 19, pp. 5287-5291.   DOI   ScienceOn
18 Gray, B. L., Jaeggi, D., Mourlas, N. J., van Drieënhuizen, B. P., Williams, K. R., Maluf, N. I. and Kovacs, G. T. A., 1999, "Novel Interconnection Technologies for Integrated Microfluidic System," Sens. Actuators A, Vol. 77, No. 1, pp. 57-65.   DOI   ScienceOn
19 Nittis, V., Fortt, R., Legge, C. H. and de Mello, A. J., 2001, "A High-Pressure Interconnect for Chemical Microsystem Applications," Lab chip, Vol. 1, No. 2, pp. 148-152.   DOI   ScienceOn
20 Meng, E., Wu, S. and Tai, T.-C., 2000, "Micromachined Fluidic Couplers," in Proc. Micro Total Analysis Systems Symp. ($_{mu}{TAS}$), Enschede, Netherlands, pp. 41-44.
21 Gonzalez, C., Collins, S. D. and Smith, R. S., 1998, "Fluidic Interconnects for Modular Assembly of Chemical Microsystems," Sens. Actuators B, Vol. 49, No. 1-2, pp. 40-45.   DOI   ScienceOn
22 Gray, B. L., Cillins, S. D. and Smith, R. S., 2004, "Interlocking Mechanical and Fluidic Interconnections for Microfluidic Circuit Boards," Sens. Actuators B, Vol. 112, No. 1, pp. 18-24.   DOI   ScienceOn
23 Puntambekar, A. and Ahn, C. H., 2002, "Self-Aligning Microfluidic Interconnects for Glass- and Plastic-Based Microfluidic Systems," J. Micromech. Microeng., Vol. 12, No. 1, pp. 35-40.   DOI   ScienceOn
24 Yang, Z. and Maeda, R., 2003, "Socket with Built-in Valves for the Interconnection of Microfluidic Chips to Macro Constituents," J. Chromatogr. A, Vol. 1013, No. 1-2, pp. 29-33.   DOI   ScienceOn
25 Bertsch, A., Lorenz, H. and Renaud, P., 1999, "3D Microfabrication by Combining Microstereolithography and Thick Resist UV Lithography," Sens. Actuators A, Vol. 73, No. 1-2, pp. 14-23.   DOI   ScienceOn
26 Kovacs, G. T. A., 1998, Micromachined Transducers Sourcebook. New York: McGraw-Hill.
27 Hosokawa, K. and Maaeda, R., 2000, "A Pneumatically-Actuated Three-Way Microvalve Fabricated with Polydimethylsiloxane using the Membrane Transfer Technique," J. Micromech. Microeng., Vol. 10, No. 3, pp. 415-420.   DOI   ScienceOn
28 Ren, X., Bachman, M., Sims, C., Li, G. P. and Allbritton, N., 2001, "Electroosmotic Properties of Microfluidic Channels Composed of Poly(dimethylsiloxane)," J. Chromatogr. B, Biomed. Sci. Appl., Vol. 762, No. 2, pp. 117-125.   DOI   ScienceOn
29 Hu, S., Ren, X., Bachman, M., Sims, C. E., Li, G. P. and Allbritton, N., 2002, "Surface Modification of Poly(dimethylsiloxane) Microfluidic Devices by Ultraviolet Polymer Grafting," Anal. Chem., Vol. 74, No. 16, pp. 4117-4123.   DOI   ScienceOn
30 Wolfe, K. A., Breadmore, M. C., Ferrance, J. P., Power, M. E., Conroy, J. F., Norris, P. M. and Landers, J. P., 2002, "Toward a Microchip-Based Solid-Phase Extraction Method for Isolation of Nucleic Acids," Electrophoresis, Vol. 23, No. 5, pp. 727-733.   DOI   ScienceOn
31 Harrison, D. J., Fluri, K., Seiler, K., Fan, Z., Effenhauser, C. S. and Manz, A., 1993, Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip," Science, Vol. 261, No. 5123, pp. 895-897.   DOI   ScienceOn
32 Giordano, B. C., Couch, A. J., Ferrance, J. P. and Landers, J. P., 2004, "Microchip Laser-Induced Fluorescence Detection of Proteins at Submicrogram per Milliliter Levels Mediated by Dynamic Labeling under Pseudonative Conditions," Anal. Chem., Vol. 76, No. 16, pp. 4705-4714.   DOI   ScienceOn
33 Huhmer, A. F. R. and Landers, J. P., 2000, "Noncontact Infrared-Mediated Thermocycling for Effective Polymerase Chain Reaction Amplification of DNA in Nanolither Volumes," Anal. Chem, Vol 72, No. 21, pp, 5507-5512.   DOI   ScienceOn