• 제목/요약/키워드: Micro-bumps

검색결과 35건 처리시간 0.021초

코인된 솔더 범프를 형성시킨 PCB 기판을 이용한 플립 칩 접속 (Flip Chip Assembly on PCB Substrates with Coined Solder Bumps)

  • 나재웅;백경욱
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2002년도 추계기술심포지움논문집
    • /
    • pp.21-26
    • /
    • 2002
  • Solder flip chip bumping and subsequent coining processes on PCB were investigated to solve the warpage problem of organic substrates for high pin count flip chip assembly by providing good co-planarity. Coining of solder bumps on PCB has been successfully demonstrated using a modified tension/compression tester with height, coining rate and coining temperature variables. It was observed that applied loads as a function of coined height showed three stages as coining deformation : (1) elastic deformation at early stage, (2) linear increase of applied load, and (3) rapid increase of applied load. In order to reduce applied loads for coining solder bumps on PCB, effects of coining process parameters were investigated. Coining loads for solder bump deformation strongly depended on coining rates and coining temperatures. As coining rates decreased and process temperature increased, coining loads decreased. Among the effect of two factors on coining loads, it was found that process temperature had more significant effect to reduce applied coining loads during the coining process. Lower coining loads were needed to prevent substrate damages such as micro-via failure and build-up dielectric layer thickness change during applying loads. For flip chip assembly, 97Pb/Sn flip chip bumped devices were successfully assembled on organic substrates with 37Pb/Sn coined flip chip bumps.

  • PDF

ABL 범프를 이용한 마이크로 플립 칩 공정 연구 (Study of micro flip-chip process using ABL bumps)

  • 마준성;김성동;김사라은경
    • 마이크로전자및패키징학회지
    • /
    • 제21권2호
    • /
    • pp.37-41
    • /
    • 2014
  • 차세대 전자 소자 기술에서 전력전달은 소자의 전력을 낮추고 발열로 인한 문제 해결을 위해서 매우 중요한 기술로 대두되고 있다. 본 연구에서는 직사각형 ABL 전력 범프를 이용한, Cu-to-Cu 플립 칩 본딩 공정의 신뢰성 문제에 대해 살펴보았다. 다이 내 범프 높이 차이는 전기도금 후 CMP 공정을 진행했을 경우 약 $0.3{\sim}0.5{\mu}m$ 이었고, CMP 공정을 진행하지 않았을 경우는 약 $1.1{\sim}1.4{\mu}m$으로 나타났다. 또한 면적이 큰 ABL 전력 범프가 입출력 범프 보다 높이가 높게 나타났다. 다이 내 범프 높이 차이로 인해 플립 칩 본딩 공정 시 misalignment 문제가 발생하였고, 이는 본딩 quality 에도 영향을 미쳤다. Cu-to-Cu 플립 칩 공정을 위해선 다이 내 범프 높이 균일도와 Cu 범프의 평탄도 조절이 매우 중요한 요소라 하겠다.

BCB 평탄화를 활용한 마이크로 기둥 구조물 위의 인듐 범프 형성 공정 (Formation of Indium Bumps on Micro-pillar Structures through BCB Planarization)

  • 박민수
    • 마이크로전자및패키징학회지
    • /
    • 제28권4호
    • /
    • pp.57-61
    • /
    • 2021
  • 마이크로 기둥 구조물 위에 인듐 범프 배열을 형성하는 공정을 제안한다. Benzocyclobutene (BCB) 평탄화와 etch-back 공정을 통하여 매우 협소한 마이크로 기둥 위에 인듐 범프를 형성할 수 있는 공간을 확보할 수 있다. 본 연구에서는 단파장 적외선을 감지용 320×256 포맷의 하이브리드 카메라 센서 제조에 대한 자세한 공정 과정을 소개한다. 다양한 공정을 거친 BCB 필름의 shear strength는 quartz crystal microbalance 방법으로 측정하여 추출하였다. BCB 필름의 shear strength는 인듐 범프보다 103배 더 높은 것으로 확인하였다. 제작된 SWIR 카메라 센서로부터 측정된 암전류의 분포는 제안한 인듐 범프 형성 공정이 매우 민감한 적외선 카메라 센서를 구현하는 데 유용할 수 있음을 제시한다.

다구찌법을 이용한 IR 레이저 Flip-chip 접합공정 최적화 연구 (A Study on the Optimization of IR Laser Flip-chip Bonding Process Using Taguchi Methods)

  • 송춘삼;지현식;김주한;김종형;안효석
    • Journal of Welding and Joining
    • /
    • 제26권3호
    • /
    • pp.30-36
    • /
    • 2008
  • A flip-chip bonding system using IR laser with a wavelength of 1064 nm was developed and associated process parameters were analyzed using Taguchi methods. An infrared laser beam is designed to transmit through a silicon chip and used for transferring laser energy directly to micro-bumps. This process has several advantages: minimized heat affect zone, fast bonding and good reliability in the microchip bonding interface. Approximately 50 % of the irradiated energy can be directly used for bonding the solder bumps with a few seconds of bonding time. A flip-chip with 120 solder bumps was used for this experiment and the composition of the solder bump was Sn3.0Ag0.5Cu. The main processing parameters for IR laser flip-chip bonding were laser power, scanning speed, a spot size and UBM thickness. Taguchi methods were applied for optimizing these four main processing parameters. The optimized bump shape and its shear force were modeled and the experimental results were compared with them. The analysis results indicate that the bump shape and its shear force are dominantly influenced by laser power and scanning speed over a laser spot size. In addition, various effects of processing parameters for IR laser flip-chip bonding are presented and discussed.

플렉서블 기반 미세 무연솔더 범프를 이용한 칩 접합 공정 기술 (The Chip Bonding Technology on Flexible Substrate by Using Micro Lead-free Solder Bump)

  • 김민수;고용호;방정환;이창우
    • 마이크로전자및패키징학회지
    • /
    • 제19권3호
    • /
    • pp.15-20
    • /
    • 2012
  • In electronics industry, the coming electronic devices will be expected to be high integration and convergence electronics. And also, it will be expected that the coming electronics will be flexible, bendable and wearable electronics. Therefore, the demands and interests of bonding technology between flexible substrate and chip for mobile electronics, e-paper etc. have been increased because of weight and flexibility of flexible substrate. Considering fine pitch for high density and thermal damage of flexible substrate during bonding process, the micro solder bump technology for high density and low temperature bonding process for reducing thermal damage will be required. In this study, we researched on bonding technology of chip and flexible substrate by using 25um Cu pillar bumps and Sn-Bi solder bumps were formed by electroplating. From the our study, we suggest technology on Cu pillar bump formation, Sn-Bi solder bump formation, and bonding process of chip and flexible substrate for the coming electronics.

Magnetic Properties and Microstructures of Co-Cr-(Pt)-Ta Magnetic Thin Films Sputtered on Self-textured Substrates

  • Shin, Kyung-Ho;Chang, Han-Sung;Lee, Taek-Dong;Park, Joong-Keun
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제11권10호
    • /
    • pp.72-77
    • /
    • 1998
  • The effects of Al micro-bumps on the magnetic properties of CoCr(Pt)Ta/Cr films deposited on glass substrates were investigated. The coercivity increased and the coercivity squareness decreased by incorporating Cr/Al underlayers. The cause of the coercivity increase is attributed to the reduction of Co(0002) texture, the increase of magnetic isolation of CoCr(Pt)/Ta grains, and the refinement of CoCr(Pt)/Ta grains deposited on Cr/Al underlayers. The effects of an Al overlayer on the magnetic properties of CoCr(Pt)Ta/Cr films were also studied. The decrease of coercivity squareness is ascribed to the magnetic isolation of CoCr(Pt)Ta grains.

  • PDF

Pulse-reverse도금을 이용한 다층 PCB 빌드업 기판용 범프 생성특성 (Characteristics of Plated Bump on Multi-layer Build up PCB by Pulse-reverse Electroplating)

  • 서민혜;공만식;홍현선;선지완;공기오;강계명
    • 한국재료학회지
    • /
    • 제19권3호
    • /
    • pp.151-155
    • /
    • 2009
  • Micro-scale copper bumps for build-up PCB were electroplated using a pulse-reverse method. The effects of the current density, pulse-reverse ratio and brightener concentration of the electroplating process were investigated and optimized for suitable performance. The electroplated micro-bumps were characterized using various analytical tools, including an optical microscope, a scanning electron microscope and an atomic force microscope. Surface analysis results showed that the electroplating uniformity was viable in a current density range of 1.4-3.0 A/$dm^2$ at a pulse-reverse ratio of 1. To investigate the brightener concentration on the electroplating properties, the current density value was fixed at 3.0 A/$dm^2$ as a dense microstructure was achieved at this current density. The brightener concentration was varied from 0.05 to 0.3 ml/L to study the effect of the concentration. The optimum concentration for micro-bump electroplating was found to be 0.05 ml/L based on the examination of the electroplating properties of the bump shape, roughness and grain size.

Adhesive Flip Chip Technology

  • Paik, Kyung-W
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2000년도 2nd Korea-Japan Advanceed Semiconductor Packaging Technology Seminar
    • /
    • pp.7-38
    • /
    • 2000
  • Performance, reliability, form factor drive flip chip use. BGAs and CSPs will provide stepping stone to FC DCA .Growing vendor infrastructure - Low cost, high density organic substrates -New generations of fluxes and underfills .Adhesives flip chip technology as a low cost flip chip alternatives -Low cost Au stud or Electroless Ni bumps -Reliable thermal cycling and electrical performance.

  • PDF

CMOS 일체형 미세 기계전자시스템을 위한 집적화 공정 개발 (Chip-scale Integration Technique for a Microelectromechnical System on a CMOS Circuit)

  • 이호철
    • 한국정밀공학회지
    • /
    • 제20권5호
    • /
    • pp.218-224
    • /
    • 2003
  • This paper describes a novel MEMS integration technique on a CMOS chip. MEMS integration on CMOS circuit has many advantages in view of manufacturing cost and reliability. The surface topography of a CMOS chip from a commercial foundry has 0.9 ${\mu}{\textrm}{m}$ bumps due to the conformal coating on aluminum interconnect patterns, which are used for addressing each MEMS element individually. Therefore, it is necessary to achieve a flat mirror-like CMOS chip fer the microelectromechanical system (MEMS) such as micro mirror array. Such CMOS chip needs an additional thickness of the dielectric passivation layer to ease the subsequent planarization process. To overcome a temperature limit from the aluminum thermal degradation, this study uses RF sputtering of silicon nitride at low temperature and then polishes the CMOS chip together with the surrounding dummy pieces to define a polishing plane. Planarization reduces 0.9 ${\mu}{\textrm}{m}$ of the bumps to less than 25 nm.