• Title/Summary/Keyword: Memory access

Search Result 1,138, Processing Time 0.024 seconds

New Embedded Memory System for IoT (사물인터넷을 위한 새로운 임베디드 메모리 시스템)

  • Lee, Jung-Hoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.3
    • /
    • pp.151-156
    • /
    • 2015
  • Recently, an embedded flash memory has been widely used for the Internet of Things(IoT). Due to its nonvolatility, economical feasibility, stability, low power usage, and fast speed. With respect to power consumption, the embedded memory system must consider the most significant design factor. The objective of this research is to design high performance and low power NAND flash memory architecture including a dual buffer as a replacement for NOR flash. Simulation shows that the proposed NAND flash system can achieve better performance than a conventional NOR flash memory. Furthermore, the average memory access time of the proposed system is better that of other buffer systems with three times more space. The use of a small buffer results in a significant reduction in power consumption.

WARP: Memory Subsystem Effective for Wrapping Bursts of a Cache

  • Jang, Wooyoung
    • ETRI Journal
    • /
    • v.39 no.3
    • /
    • pp.428-436
    • /
    • 2017
  • State-of-the-art processors require increasingly complicated memory services for high performance and low power consumption. In particular, they request transfers within a burst in a wrap-around order to minimize the miss penalty of a cache. However, synchronous dynamic random access memories (SDRAMs) do not always generate transfers in the wrap-round order required by the processors. Thus, a memory subsystem rearranges the SDRAM transfers in the wrap-around order, but the rearrangement process may increase memory latency and waste the bandwidth of on-chip interconnects. In this paper, we present a memory subsystem that is effective for the wrapping bursts of a cache. The proposed memory subsystem makes SDRAMs generate transfers in an intermediate order, where the transfers are rearranged in the wrap-around order with minimal penalties. Then, the transfers are delivered with priority, depending on the program locality in space. Experimental results showed that the proposed memory subsystem minimizes the memory performance loss resulting from wrapping bursts and, thus, improves program execution time.

Cache Sensitive T-tree Main Memory Index for Range Query Search (범위질의 검색을 위한 캐시적응 T-트리 주기억장치 색인구조)

  • Choi, Sang-Jun;Lee, Jong-Hak
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.10
    • /
    • pp.1374-1385
    • /
    • 2009
  • Recently, advances in speed of the CPU have for out-paced advances in memory speed. Main-memory access is increasingly a performance bottleneck for main-memory database systems. To reduce memory access speed, cache memory have incorporated in the memory subsystem. However cache memories can reduce the memory speed only when the requested data is found in the cache. We propose a new cache sensitive T-tree index structure called as $CST^*$-tree for range query search. The $CST^*$-tree reduces the number of cache miss occurrences by loading the reduced internal nodes that do not have index entries. And it supports the sequential access of index entries for range query by connecting adjacent terminal nodes and internal index nodes. For performance evaluation, we have developed a cost model, and compared our $CST^*$-tree with existing CST-tree, that is the conventional cache sensitive T-tree, and $T^*$-tree, that is conventional the range query search T -tree, by using the cost model. The results indicate that cache miss occurrence of $CST^*$-tree is decreased by 20~30% over that of CST-tree in a single value search, and it is decreased by 10~20% over that of $T^*$-tree in a range query search.

  • PDF

Compact Field Remapping for Dynamically Allocated Structures (동적으로 할당된 구조체를 위한 압축된 필드 재배치)

  • Kim, Jeong-Eun;Han, Hwan-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.10
    • /
    • pp.1003-1012
    • /
    • 2005
  • The most significant difference of embedded systems from general purpose systems is that embedded systems are allowed to use only limited resources including battery and memory. Especially, the number of applications increases which deal with multimedia data. In those systems with high data computations, the delay of memory access is one of the major bottlenecks hurting the system performance. As a result, many researchers have investigated various techniques to reduce the memory access cost. Most programs generally have locality in memory references. Temporal locality of references means that a resource accessed at one point will be used again in the near future. Spatial locality of references is that likelihood of using a resource gets higher if resources near it were just accessed. The latest embedded processors usually adapt cache memory to exploit these two types of localities. Processors access faster cache memory than off-chip memory, reducing the latency. In this paper we will propose the enhanced dynamic allocation technique for structure-type data in order to eliminate unused memory space and to reduce both the cache miss rate and the application execution time. The proposed approach aggregates fields from multiple records dynamically allocated and consecutively remaps them on the memory space. Experiments on Olden benchmarks show $13.9\%$ L1 cache miss rate drop and $15.9\%$ L2 cache miss drop on average, compared to the previously proposed techniques. We also find execution time reduced by $10.9\%$ on average, compared to the previous work.

Development of Giant Magnetoresistive Random Access Memory (GMRAM) For Space and Commercial Applications

  • Zhu, Theodore
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.61-81
    • /
    • 2000
  • Developed two GMR memory architectures, 1R/0T for high density applications, 2R/5T for high speed applications, Embedded GMR technology shall offer rad hard community, Dynamic Reprogrammability, Rapid System Reconfigurability, Code modification in flight, Embedded GMR technology is promising for commercial applications

  • PDF

MRAM Technology for High Density Memory Application

  • Kim, Chang-Shuk;Jang, In-Woo;Lee, Kye-Nam;Lee, Seaung-Suk;Park, Sung-Hyung;Park, Gun-Sook;Ban, Geun-Do;Park, Young-Jin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.3
    • /
    • pp.185-196
    • /
    • 2002
  • MRAM(magnetic random access memory) is a promising candidate for a universal memory with non-volatile, fast operation speed and low power consumption. The simplest architecture of MRAM cell is a combination of MTJ(magnetic tunnel junction) as a data storage part and MOS transistor as a data selection part. This article will review the general development status of MRAM and discuss the issues. The key issues of MRAM technology as a future memory candidate are resistance control and low current operation for small enough device size. Switching issues are controllable with a choice of appropriate shape and fine patterning process. The control of fabrication is rather important to realize an actual memory device for MRAM technology.

The Design of the Shared Memory in the Dual Core System (Dual Core 시스템에서 Shared Memory 기능 설계)

  • Jang, Seung-Ju;Lee, Gwang-Yong;Kim, Jae-Myeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.8
    • /
    • pp.1448-1455
    • /
    • 2008
  • This paper designs Shared Memory on the Dual Core system so that it operates a general System V IPC on the Linux O.S. Shared Memory is the technique that many processes can access to identical memory area. We treat Shared Memory in this paper among big two branches of Shared Memory which are SVR in a kernel step format. We design a share memory facility of Linux operating system on the Dual Core System. In this paper the suggesting design plan of share memory facility in Dual Core system is enhancing the performance in existing unity processor system as a dual core practical use. We attempt a performance enhance in each CPU for each process which uses a share memory.

Design of High-Speed Image Processing System for Line-Scan Camera (라인 스캔 카메라를 위한 고속 영상 처리 시스템 설계)

  • 이운근;백광렬;조석빈
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.178-184
    • /
    • 2004
  • In this paper, we designed an image processing system for the high speed line-scan camera which adopts the new memory model we proposed. As a resolution and a data rate of the line-scan camera are becoming higher, the faster image processing systems are needed. But many conventional systems are not sufficient to process the image data from the line-scan camera during a very short time. We designed the memory controller which eliminates the time for transferring image data from the line-scan camera to the main memory with high-speed SRAM and has a dual-port configuration therefore the DSP can access the main memory even though the memory controller are writing the image data. The memory controller is implemented by VHDL and Xilinx SPARTAN-IIE FPGA.

Hardware Platforms for Flash Memory/NVRAM Software Development

  • Nam, Eyee-Hyun;Choi, Ki-Seok;Choi, Jin-Yong;Min, Hang-Jun;Min, Sang-Lyul
    • Journal of Computing Science and Engineering
    • /
    • v.3 no.3
    • /
    • pp.181-194
    • /
    • 2009
  • Flash memory is increasingly being used in a wide range of storage applications because of its low power consumption, low access latency, small form factor, and high shock resistance. However, the current platforms for flash memory software development do not meet the ever-increasing requirements of flash memory applications. This paper presents three different hardware platforms for flash memory/NVRAM (non-volatile RAM) software development that overcome the limitations of the current platforms. The three platforms target different types of host system and provide various features that facilitate the development and verification of flash memory/NVRAM software. In this paper, we also demonstrate the usefulness of the three platforms by implementing three different types of storage system (one for each platform) based on them.

W 도핑된 ZnO 박막을 이용한 저항 변화 메모리 특성 연구

  • Park, So-Yeon;Song, Min-Yeong;Hong, Seok-Man;Kim, Hui-Dong;An, Ho-Myeong;Kim, Tae-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.410-410
    • /
    • 2013
  • Next-generation nonvolatile memory (NVM) has attracted increasing attention about emerging NVMs such as ferroelectric random access memory, phase-change random access memory, magnetic random access memory and resistance random access memory (RRAM). Previous studies have demonstrated that RRAM is promising because of its excellent properties, including simple structure, high speed and high density integration. Many research groups have reported a lot of metal oxides as resistive materials like TiO2, NiO, SrTiO3 and ZnO [1]. Among them, the ZnO-based film is one of the most promising materials for RRAM because of its good switching characteristics, reliability and high transparency [2]. However, in many studies about ZnO-based RRAMs, there was a problem to get lower current level for reducing the operating power dissipation and improving the device reliability such an endurance and an retention time of memory devices. Thus in this paper, we investigated that highly reproducible bipolar resistive switching characteristics of W doped ZnO RRAM device and it showed low resistive switching current level and large ON/OFF ratio. This may be caused by the interdiffusion of the W atoms in the ZnO film, whch serves as dopants, and leakage current would rise resulting in the lowering of current level [3]. In this work, a ZnO film and W doped ZnO film were fabricated on a Si substrate using RF magnetron sputtering from ZnO and W targets at room temperature with Ar gas ambient, and compared their current levels. Compared with the conventional ZnO-based RRAM, the W doped ZnO ReRAM device shows the reduction of reset current from ~$10^{-6}$ A to ~$10^{-9}$ A and large ON/OFF ratio of ~$10^3$ along with self-rectifying characteristic as shown in Fig. 1. In addition, we observed good endurance of $10^3$ times and retention time of $10^4$ s in the W doped ZnO ReRAM device. With this advantageous characteristics, W doped ZnO thin film device is a promising candidates for CMOS compatible and high-density RRAM devices.

  • PDF