• Title/Summary/Keyword: Matrix algebra

Search Result 141, Processing Time 0.023 seconds

LINEAR OPERATORS THAT PRESERVE ZERO-TERM RANK OF BOOLEAN MATRICES

  • Kim, Seong-A.;David, Minda
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.6
    • /
    • pp.1181-1190
    • /
    • 1999
  • Zero-term rank of a matrix is the minimum number of lines (rows or columns) needed to cover all the zero entries of the given matrix. We characterized the linear operators that preserve zero-term rank of the m×n matrices over binary Boolean algebra.

  • PDF

MULTIPLICATION OPERATORS ON BERGMAN SPACES OVER POLYDISKS ASSOCIATED WITH INTEGER MATRIX

  • Dan, Hui;Huang, Hansong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.41-50
    • /
    • 2018
  • This paper mainly considers a tuple of multiplication operators on Bergman spaces over polydisks which essentially arise from a matrix, their joint reducing subspaces and associated von Neumann algebras. It is shown that there is an interesting link of the non-triviality for such von Neumann algebras with the determinant of the matrix. A complete characterization of their abelian property is given under a more general setting.

ON THE STABILITY OF A FIXED POINT ALGEBRA C*(E)γ OF A GAUGE ACTION ON A GRAPH C*-ALGEBRA

  • Jeong, Ja-A.
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.3
    • /
    • pp.657-673
    • /
    • 2009
  • The fixed point algebra $C^*(E)^{\gamma}$ of a gauge action $\gamma$ on a graph $C^*$-algebra $C^*(E)$ and its AF subalgebras $C^*(E)^{\gamma}_{\upsilon}$ associated to each vertex v do play an important role for the study of dynamical properties of $C^*(E)$. In this paper, we consider the stability of $C^*(E)^{\gamma}$ (an AF algebra is either stable or equipped with a (nonzero bounded) trace). It is known that $C^*(E)^{\gamma}$ is stably isomorphic to a graph $C^*$-algebra $C^*(E_{\mathbb{Z}}\;{\times}\;E)$ which we observe being stable. We first give an explicit isomorphism from $C^*(E)^{\gamma}$ to a full hereditary $C^*$-subalgebra of $C^*(E_{\mathbb{N}}\;{\times}\;E)({\subset}\;C^*(E_{\mathbb{Z}}\;{\times}\;E))$ and then show that $C^*(E_{\mathbb{N}}\;{\times}\;E)$ is stable whenever $C^*(E)^{\gamma}$ is so. Thus $C^*(E)^{\gamma}$ cannot be stable if $C^*(E_{\mathbb{N}}\;{\times}\;E)$ admits a trace. It is shown that this is the case if the vertex matrix of E has an eigenvector with an eigenvalue $\lambda$ > 1. The AF algebras $C^*(E)^{\gamma}_{\upsilon}$ are shown to be nonstable whenever E is irreducible. Several examples are discussed.

SOME REDUCED FREE PRODUCTS OF ABELIAN C*

  • Heo, Jae-Seong;Kim, Jeong-Hee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.5
    • /
    • pp.997-1000
    • /
    • 2010
  • We prove that the reduced free product of $k\;{\times}\;k$ matrix algebras over abelian $C^*$-algebras is not the minimal tensor product of reduced free products of $k\;{\times}\;k$ matrix algebras over abelian $C^*$-algebras. It is shown that the reduced group $C^*$-algebra associated with a group having the property T of Kazhdan is not isomorphic to a reduced free product of abelian $C^*$-algebras or the minimal tensor product of such reduced free products. The infinite tensor product of reduced free products of abelian $C^*$-algebras is not isomorphic to the tensor product of a nuclear $C^*$-algebra and a reduced free product of abelian $C^*$-algebra. We discuss the freeness of free product $II_1$-factors and solidity of free product $II_1$-factors weaker than that of Ozawa. We show that the freeness in a free product is related to the existence of Cartan subalgebras in free product $II_1$-factors. Finally, we give a free product factor which is not solid in the weak sense.

MAXIMALITY PRESERVING CONSTRUCTIONS OF MAXIMAL COMMUTATIVE SUBALGEBRAS OF MATRIX ALGEBRA

  • Song, Young-Kwon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.2
    • /
    • pp.295-306
    • /
    • 2012
  • Let (R, $m_R$, k) be a local maximal commutative subalgebra of $M_n$(k) with nilpotent maximal ideal $m_R$. In this paper, we will construct a maximal commutative subalgebra $R^{ST}$ which is isomorphic to R and study some interesting properties related to $R^{ST}$. Moreover, we will introduce a method to construct an algebra in $MC_n$(k) with i($m_R$) = n and dim(R) = n.