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A GEOMETRIC APPROACH TO TWO-POINT
COMPARISONS FOR HYPERBOLIC AND EUCLIDEAN
GEOMETRY

SEONG-A KiM AND DaviD MINDA

ABSTRACT. Two-point comparison theorems between hyperbolic and
euclidean geometry for convex regions in the complex plane C are
known ([5}, {6]). We give new geometric proofs of sharp two-point
comparison theorems for convex regions.

1. Introduction

Sharp two-point comparison theorems between hyperbolic and eu-
clidean geometry are known for various types of regions in the complex
plane C ([5], [6], [7], [8]). These comparison theorems were motivated by
work of Blatter [1] dealing with a characterization of univalent functions.
The proofs of these results rely upon coefficient estimates for certain
classes of functions defined on the unit disk D. The purpose of this note
is to present new geometric proofs of two-point comparison theorems for
convex regions. Qur proofs show that these comparisons can be derived
from the fact that the reciprocal of the density of the hyperbolic metric is
-a concave function on convex regions [10]. This concavity property actu-
ally characterizes convex regions [4]. Other characterizations of convex
regions in terms of hyperbolic geometry are given in [3].

We recall the known comparisons for convex regions. We begin with
a brief discussion of hyperbolic geometry. Suppose (2 is a convex region
in C with  # C. Let Aq(w)|dw| denote the hyperbolic metric on Q. For
the unit disk Ap(2)|dz| = |dz|/(1 — |2|?). The density \q is determined
from Aa(f(2)) = 1/[(1 = |z|?)|f'(2)]], where f is any conformal mapping
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of the unit disk onto 2. The hyperbolic distance between A, B € Q is
given by

dQ(A, B) = inf/)\g(w){dw|,

where the infimum is taken over all rectifiable paths v in Q joining A
and B. A path § connecting A and B is called a hyperbolic geodesic if

do(4, B) = /5 Dalw)]duw].

For the unit disk
a—b
1—ab
and hyperbolic geodesics are arcs of circles that are orthogonal to the
unit circle 9D. Hyperbolic geodesics exist in {2 and are the images of
hyperbolic geodesics in D under a conformal map f: D — Q.

In addition to supporting hyperbolic geometry, €2 carries the euclidean
" geometry that it inherits as a subset of C. Two-point comparison theo-
rems bound the euclidean distance |A — B| above and below in terms of

the hyperbolic distance do(A, B) and the values Aq(A) and Aq(B). For
a convex region ) and any p > 1 the lower bound

sinh(da(A, B)) 1 1
2cosh(pda(A, B)V? | 3alAF © ra(B

and the upper bound

dp(a,b) = artanh

i/p
5| <i4-sl

[2 cosh(pdq (A, B))]"/?sinh(da(A, B))
[Pa(A) + Aa(B)P]MP
are known ([5] and [6]). Both bounds are sharp: equality holds in either
for distinct A, B € Q if and only if €2 is a half-plane and the euclidean
line through A and B is perpendicular to the edge of the half-plane.
The lower (upper) bound is a nonincreasing (nondecreasing) function of
p > 1. Therefore, the bounds for p = 1, namely,
sinh(dq(A, B)) 1 1
<|A-B
W 2eosh(da(d, B) 3@ 2] =477
< 2cosh(dq(A4, B)) sinh(dn(A, B))
- Aa(A) + Aa(B)

|A—B| <
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- are the strongest. The limiting cases p = 00 are the weakest:
sinh(dq(A, B))
exp(da(A, B)) min{Aa(4), Aa(B)}
< exp(da(A, B))sinh(do(A, B))

max{/\g(A), )\Q(B)} '

These weakest comparisons are invariant versions of the classical growth
theorem
|| ||

1+lz|"’l()l"‘1 2|

for normalized (g(0) = 0,¢'(0) = 1) convex univalent functions g de-
fined on D. We shall provide a new, geometric proof of the strongest
inequalities (1).

<|A-B|

2. Preliminaries

'Two quantities associated with the hyperbolic metric play an impor-
tant role in our work. These quantities are the connection

Olog A
Pa(w) = 252" (w)
and the Schwarzian :
‘ 8210 dlogra, \?|
Sa(w) = 2[“‘5"1”2——('”)"( —5—(w)
’ or 1 '
= 5o (w) = 5Ta(w)".
Note that

S W) = Sa(w) + %P a(w)2.

Also,

0Tq
g
follows from the fact that Ag(w)|dw[ has curvature —4; that is,

Alog a(w) _ 4% (w)
Ao(w): Anf{w)?

(w) = 2)\;1(10)2

— = —
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Various characterizations of convexity are conveniently expressed in terms
of the connection and the Schwarzian.

PROPOSITION 1. Suppose () is a hyperbolic région in C. Then the
following are equivalent.

(i) Q is convex.

(i) 5 is concave on Q.
(iii) |Se(w)| + 3ITa(w)[? < 2XAq(w)? for w € Q.
(iv) |Ta(w)| < 2Aq(w) for w € Q.

The equivalence of (i), (ii) and (iii) is established in [4], but in different
notation. The simple identities

L |7) | s
Ao(w) | Ow? 2xq(w)?’

5 (1 Ca(w)
2w (52) @] = S

show that Theorem 1 of [4] contains the equivalence of (i), (ii) and (iii).
Note that (iii) implies (iv). The equivalence of (i) and (iv) is given in
[2]. See [9] for a geometric proof that (i) implies (iv), as well as for a
proof that equality holds in (iv) if and only if 2 is a half-plane. In other
words, [['g| = 2Aq when Q is a half-plane.

In addition to these characterizations of convex regions we require an
elementary result for a differential inequality.

PROPOSITION 2. Suppose u,v € C}[—L, L], v" < 4v and v" = 4u. If
u(L) = v(L) and u(—L) = v(—L), then eitherv=won[-L, L] orv > u
on (—L,L).

For a proof of this result see [6].

3. Main result

THEOREM 1. Suppose (2 is a convex region in C with Q # C.
(i) For A,B € Q
) sinh(dn(A, B)) 1
2 COSh(dQ(A, B)) /\Q(A) )\Q(B)

<|A-B|



A geometric approach to two-point comparisons 1173

(ii) For A,B € Q
| 2 cosh(da(4, B)) sinh(da(A, B))
Aa(A) + Aa(B) '

. Equality holds in (2) or (3) for distinct A and B if and only if Q is a
half-plane and the euclidean line through A and B is perpendzcular to
the edge of Q2.

(3) |A-B| <

Proof. (i) Fix A,B € Q with A # B. Because Q is convex, the
straight line segment +y := [A, B] is contained in Q. Let v : w = w(s),
—L < s < L, be a hyperbolic arclength parametrization of y. This
means that w'(s) = e? /A\q(w(s)), where 6 is the argument of B — A, and
2L is the hyperbolic length of v. Set

S U
v(s) := a(w() L<s<L
Then
g 2 Pa(w(s).,
S W (s))?Re{ o v/}

= Aﬂ( ( Re {Ta(w(s))e’}

= s)Re {To(w(s))e®}.

Next, we compute the second derivative of v.
v"(s) = —2v(s)v'(s)Re {Ta(w(s))e”} —v*(s)Re { i[‘(w(s))}
= 20%(s)Re’® {Tqa(w(s))e?} — v*(s)Re {eiezi%Fg(w(g))} .

Now,

2 ofw(s) = 22 w(s)w <>+———<w<s> '<s>

[Sn(w(s)) + 2Tafw(s)) ] ( 5+ Pha(u(e)e
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so that

v"(s) = 203(s)Re? {To(w(s))e®}
v¥(s)

~sorbhe { [ saw(s) + gTatw(s)?] )}

—20%(s) Aq(w(s)) .
= v(s) [2Re? {Ta(w(s))e”}

—Re { LSQ('LU(S)) + %FQ(’U)(S))Z- em}q — 2u(s)
= %) |ITaw(s)
—Re { Sa(w(s)) — %I'h(w(s))2 ezw} — 2u(s)

2Re? {To(w(s))e?} = |To(w(s))[? +Re{I‘Q () 1"’]2}.

Because 1 is convex we obtain

V(s) < v(s) ITa(w(s)? + [Sa(w(s)) - 3Taw(s))

] — 2u(s)
ICn((@)f + ISa(uw(e))] + 5 ITalw(e)| - 20(9)

v(s) :(2AQ(’LU(S)))2 + 2)\9(11)(8))2] — 2u(s)
4u(s).

IA
c
W
—_—
%]
~—

A

Note that if v”(s) = 4v(s), then |Ta(w(s))| = 2Aa(w(s)), and so 2 must
be a half-plane.

Let u(s) = ccosh(2s) + dsinh(2s) be the solution of u"(s) = 4u(s)
that satisfies the boundary conditions u(—L) = v(—L) and »(L) = v(L).
Then

o(L) +v(~L) _ %@ T %@
2 cosh(2L) 2cosh(2L) ’
(L) —v(-L)
2sinh(2L)
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Proposition 2 implies that either v = u on [=L,L}orv>uon(-L,L).
Now, '

A-B| = / \duw] = / w)lds

/ o) /i v(s)ds

/ u(s)ds = csinh(2L)
-L

_ sinh(2L) [ 1 L
" 2cosh(2L) | da(A4)  Aa(B)

1 1 1
= 5tanh(2L) [AQ(A) + AQ(B)]' :
Note that equality implies v = u and so v"(s) = 4v(s) on [~L, L]; this
implies € is a half-plane. Since 2L > do(A, B) with equality if and only
if v is a hyperbolic geodesic, we conclude that

I

v

1 1 1
_ sinh(do(A, B)) [ 1 . 1 ]

2cosh(da(A4, B)) {Ma(4)  Xa(B)]
Equality implies that §) is a half-plane and the straight line segment
v = [A, B] is_a hyperbolic geodesic. In a half-plane the hyperbolic
geodesics are arcs of circles orthogonal to the edge of the half-plane and
segments of lines perpendicular to the edge of the half-plane. Hence,
if equality holds, then Q is a half-plane and [A, B] is part of a line
perpendicular to the edge of the half-plane.

All that remains is to show that equality holds when Q is a half-plane
and [A, B} is perpendicular to Q. It suffices to consider the particular
half-plane H = {w : Im{w} > 0}. Then Ag(w) = 1/[2Im {w}]. Fix
u € Rand 0 < a < b. Then for A = u+ia and B = u-+ib, [A—~B| = b—a,
du(A, B) = 1log?, and \g(4) = 1/(2a), Au(B) = 1/(2b). It is now
stralghtforward to check that equality holds in (2).

(ii) Consider A, B € 2 with A # B. Let § be the hyperbolic geodesic
joining A to B. Suppose 6w = w(s), =L < s < L, is a hyperbolic
arclength parametrization of §. Then 2L = dQ(A B), the hyperbolic
length of 8, and w/(s) = €#() /Aq(w(s)), where ?©) is a unit tangent to
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0 at w(s). Set
V(s) := Ap(w(s)).
Then

Vi(s) = 2Re{%(w(s))w'(s)}

8)\9 ei0(s)
- e { SNy )
= Re {Fg(w(s))eio(s)}.
Because 2 is convex we obtain
(4) [V'(s)] < |Ta(w(s))| < 2Aa(w(s)) = 2V (s).

Next, we calculate the second derivative of V.

V'(s) = Re {e”(s)g;rg(w(s))} +Re {rn(w(s))disew@)}

= e { [Sg('w(s)) + %Fn(w(s))z] e2i9<s>}

+2Aq(w(s)) + iodii)Re {ie®)Tq(w(s))} .

The hyperbolic curvature of § is
Ke(w(s), ) + 2Im {228 (gy(s))ei?(c)}

kp(w(s),6) = Aa(w(s))
_ Ke((s),8) + Tm {Ta(w(s))e’)
Xa(w(s)) ’
where
_ 1 [ws)
Ke(w(s), ) = fw'(3)] I {w’(s) }

is the euclidean curvature of v at w(s). Since § is a hyperbolic geodesic,
kr(w(s),d) =0, so

Im {Tqo(w(s))e?@} = —k,(w(s), §).

From w/(s) = €?®) /Aq(w(s)), we obtain

- {5) -2
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and so
(e, ) = G Aalw(s)
Thus,
Cde(s) 1 o w(s)ed®)
ds )\Q(w(s))I {FQ( () }
and so
Vi(s) = mRe {[Sg(w(s)) + %rg(w(s)y} ew(s)}
+22q(w(s)) + E(“JT(E)') Im? {To(w(s))e®}
Re {ilq(w(s))e?™®} = —Im {Fg(w(s))ew(s)} .
Finally, '
V'(s) = ! ( IPa(w(s)) [ + Re {Sg(w s))em(s)}) + 2 (w(s)),
A (w(s))
1

5Re {(Fg(w(s))ew(s))2} + Tm? {To(w(s))e?@} = % ITa(w(s))?.

Because (2 is convex, we get

4 . 1 1 .
V) < gy (3P + ISa(wO)) + 2ra(u(s)

< Ag(w(s)) =4V (s).

Now, let U(s) = C cosh(2s) + Dsinh(2s) be the solution of U"(s) =
4U(s) that satisfies the boundary conditions U(—-L) = V(-L) and
U(L) = V(L). Then
2 cosh(2L) 2cosh(da(A4,B)) =
b _ VD) -V(-L)
2sinh(2L)
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Proposition 2 implies V = U on [-L,L} or V > U on (—L, L). Now, if
U>0on[-L, L]

-8 < [laul= [ w(olds
L ds ) L ds
B /—L da(w(s)) ~ J L V(s)

< /L ds
~ J_p Ccosh(2s) + Dsinh(2s)’

with equality if and only if the hyperbolic geodesic § is the euclidean
line segment [A, B]. We show that U > 0 on [—L, L]. Note that

1  Ccosh(2s) — Dsinh(2s)
U(s)  C2cosh?(2s) — D?sinh?(2s)
1 cosh(2s) — 7 sinh(2s)
C1+ (1 — 72) sinh?(2s)’

where

V(L) -V(-L) 1

V(L) +V(-L) tanh(2L)

We will show that || < 1; in particular, this shows that U > 0 on
[—L, L]. From (4) we have

_._D_
=2

<

'(s)
-2< <2
for s € [-L,L]. If we integrate these inequalities over the interval
[-L, L], then we obtain

—4L < logL((_% <A4L,

or

e—4L < V(L) < e4L'

The function h(t) = (t —1)/(¢t + 1) is increasing for t > —1 since h'(t) =
2/(t + 1)2 > 0. Thus,

M) < (g ) < A,
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or
V(L) -V(-L) _
V(L) +V(L) ~

This demonstrates that |7| < <1 Also, we conclude that 7 = %1 implies

[V'(s)| = 21V (s)], or |Ta(w(s))| = 2Xa(w(s)), which means Q is a half-
plane Now

—tanh(2L) < < tanh(2L).

ds . / cosh(2s) =7 sinh(Zs)
- Ccosh(2s) + Dsinh(2s) L 1+ (1 — 72)sinh®(2s)
cosh(2s)

T C /L 1+ (1-72) s1nh2(23)
since sinh(2s)/[1 + (1 — 72) sinh?(2s)] is an odd function. Also,

L ) L
/ cosh(2s) ds < / cosh(2s) ds

1+ (1 =7)sinh’@2s  ~ J_1
= sinh(2L)
= sinh(do(A4, B)),
and equality implies 7 = +1. By combinihg our inequalities, we obtain_
sinh(dn(A, B)) _ 2cosh(dp(A, B)) sinh(da(A, B))
C - )\Q(A) + )\Q(B)
and equality implies 2 is a half-plane and § = [A, B] is a hyperbolic
geodesic, so [A, B] must be perpendicular to 9.

Conversely, it is routine to show that if  is a half-plane and [A, B]
lies on a line orthogonal to J2, then equality holds in (3).

|A-B| <
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