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GROUP INVERSE AND GENERALIZED DRAZIN INVERSE

OF BLOCK MATRICES IN A BANACH ALGEBRA

Dijana Mosić

Abstract. Necessary and sufficient conditions for the existence of the
group inverse of an anti-triangular block matrix in Banach algebras are
presented. Using these results, we give the formulae for the generalized
Drazin inverse of a block matrix.

1. Introduction

Let A be a complex unital Banach algebra with unit 1. The sets of all
invertible and quasinilpotent elements (σ(a) = {0}) of A will be denoted by
A−1 and Aqnil, respectively.

The group inverse of a ∈ A is the unique element a# ∈ A which satisfies

a#aa# = a#, aa#a = a, aa# = a#a.

If the group inverse of a exists, a is group invertible. Denote by A# the set of
all group invertible elements of A.

The generalized Drazin inverse of a ∈ A (or Koliha–Drazin inverse of a) is
the unique element ad ∈ A which satisfies

adaad = ad, aad = ada, a− a2ad ∈ Aqnil.

Recall that aπ = 1− aad is the spectral idempotent of a corresponding to the
set {0} [9]. We use Ad to denote the set of all generalized Drazin invertible
elements of A.

We state the following result which is proved for matrices [8, Theorem 2.1],
for bounded linear operators [7, Theorem 2.3] and for elements of Banach
algebras [4].

Lemma 1.1 ([4, Example 4.5]). Let a, b ∈ Ad and let ab = 0. Then

(a+ b)d =

∞
∑

n=0

(bd)n+1anaπ +

∞
∑

n=0

bπbn(ad)n+1.
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The group inverse and Drazin inverse of an operator or a matrix has various
applications in singular differential equations and singular difference equations,
Markov chains, numerical analysis, probability statistical and so on [2]. Several
authors have investigated representations for the group inverse and Drazin
inverse of an anti-triangular block operator or matrix, under some conditions
on the individual blocks [1, 3, 5, 6, 10].

Liu and Yang [10] studied necessary and sufficient conditions for the exis-
tence of the group inverse of an anti-triangular block matrix, using the rank of
block matrices.

If p = p2 ∈ A is an idempotent, we can represent element a ∈ A as

a =

[

a11 a12
a21 a22

]

,

where a11 = pap, a12 = pa(1− p), a21 = (1− p)ap, a22 = (1 − p)a(1− p).
Let

(1) x =

[

a b

c d

]

∈ A

relative to the idempotent p ∈ A and bc ∈ (pAp)#. For d = 0 in (1), x is an anti-
triangular block matrix. We are going to study the equivalent conditions for the
existence and the representations for the group inverse of the anti-triangular
block matrix. Then, applying these results, we show some expressions for the
generalized Drazin inverse of a block matrix in (1), where d ∈ ((1−p)A(1−p))d,
under certain conditions involving the group inverse of the product bc.

Lemma 1.2. Let p ∈ A be an idempotent, b ∈ pA(1 − p), c ∈ (1 − p)Ap and

bc ∈ (pAp)#. If (bc)πb = 0 or c(bc)π = 0, then cb ∈ ((1 − p)A(1 − p))# and

(cb)# = c[(bc)#]2b.

Proof. Denote by z = c[(bc)#]2b. It follows that zcb = c(bc)#b = cbz and
zcbz = z. If (bc)πb = 0 or c(bc)π = 0, then cbzcb = cbc(bc)#b = cb. So,
cb ∈ ((1− p)A(1− p))# and (cb)# = z. �

2. Results

First, we present the necessary and sufficient conditions for the existence of
the group inverse of the anti-triangular block matrix.

Theorem 2.1. Let x = [ a b
c 0 ] ∈ A relative to the idempotent p ∈ A and

bc ∈ (pAp)#. Then a(bc)π = 0, c(bc)π = 0 and (bc)πb = 0 if and only if

x ∈ A# and x# = t, where

(2) t =

[

(bc)πa(bc)# (bc)#b− (bc)πa(bc)#a(bc)#b
c(bc)# −c(bc)#a(bc)#b

]

.

Proof. If a(bc)π = 0, c(bc)π = 0 and (bc)πb = 0, we can easy verify that xt = tx,
txt = t and xtx = x. Thus, x ∈ A# and x# = t.
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Suppose that x ∈ A# and the group inverse x# is represented by t in (2).
Then, [xx#]21 = [x#x]21 gives

(3) c(bc)#a(bc)π = c(bc)πa(bc)#.

From [xx#x]11 = [x]11, [xx
#x]21 = [x]21 and [xx#x]12 = [x]12, we have

(4) a(bc)π = a(bc)πa(bc)#a(bc)π + bc(bc)#a(bc)π,

(5) c(bc)π = c(bc)πa(bc)#a(bc)π,

(6) (bc)πb = a(bc)πa(bc)#b.

The equality [x#xx#]11 = [x#]11 implies

(7) (bc)πa(bc)#a(bc)πa(bc)# = 0.

Applying the equality (5) twice and (7), we get

c(bc)π = c(bc)πa(bc)#a(bc)π = c(bc)πa(bc)#a(bc)πa(bc)#a(bc)π = 0.

By (4), (3) and the previous equality, observe that

a(bc)π = a(bc)πa(bc)#a(bc)π + bc(bc)πa(bc)# = a(bc)πa(bc)#a(bc)π

which yields

a(bc)π = a(bc)πa(bc)#a(bc)πa(bc)#a(bc)π.

Now, (7) gives a(bc)π = 0. Using this equality and (6), we deduce that (bc)πb =
0. �

If we state the condition (bc)πa = 0 instead of the assumption a(bc)π = 0 of
Theorem 2.1, we obtain the following result in an analogous manner as in the
proof of Theorem 2.1.

Theorem 2.2. Let x = [ a b
c 0 ] ∈ A relative to the idempotent p ∈ A and

bc ∈ (pAp)#. Then (bc)πa = 0, c(bc)π = 0 and (bc)πb = 0 if and only if

x ∈ A# and x# = u, where

(8) u =

[

(bc)#a(bc)π (bc)#b
c(bc)# − c(bc)#a(bc)#a(bc)π −c(bc)#a(bc)#b

]

.

Observe that in Theorem 2.1 and Theorem 2.2 we obtain the same expres-
sions for the group inverse as in [10, Theorem 2.4 and Theorem 2.5] but under
different conditions.

Since the hypothesis bc ∈ (pAp)−1 implies (bc)π = 0, the next corollary
follows by Theorem 2.1 and Theorem 2.2.

Corollary 2.1. Let x = [ a b
c 0 ] ∈ A relative to the idempotent p ∈ A and

bc ∈ (pAp)−1. Then x ∈ A# and

x# =

[

0 (bc)#b
c(bc)# −c(bc)#a(bc)#b

]

.
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Now, we use the previous results to determine the new expressions of the
generalized Drazin inverse of a block matrix x in (1), where bc ∈ (pAp)# and
d ∈ ((1− p)A(1 − p))d.

Theorem 2.3. Let x be defined as in (1), d ∈ ((1 − p)A(1 − p))d and bc ∈
(pAp)#. If

bd = 0, a(bc)π = 0, c(bc)π = 0, and (bc)πb = 0,

then x ∈ Ad and

(9) xd =

[

0 0
0 dd(cb)π

]

+

[

p 0
0 dπ

]

t+

∞
∑

n=1

[

0 0
0 dπdn

]

tn+1,

where t is defined as in (2).

Proof. We can write

(10) x =

[

a b

c 0

]

+

[

0 0
0 d

]

:= y + z.

The hypothesis bd = 0 gives yz = 0. Applying Theorem 2.1, note that y ∈ A#

and y# = t. By Lemma 1.2, we deduce that cb ∈ ((1 − p)A(1 − p))# and
(cb)π = (1− p)− cbc[(bc)#]2b = (1− p)− c(bc)#b. Now, we have

yπ = 1− yy# =

[

(bc)π −(bc)πa(bc)#b
0 (cb)π

]

.

Obviously, z ∈ Ad,

zd =

[

0 0
0 dd

]

and zπ =

[

p 0
0 dπ

]

.

Using Lemma 1.1 and yyπ = 0, we obtain x ∈ Ad and

xd = zdyπ + zπy# +

∞
∑

n=1

zπzn(y#)n+1

implying (9). �

Applying Theorem 2.3, we show the next result.

Corollary 2.2. Let x be defined as in (1), t be defined as in (2) and bc ∈
(pAp)#. Suppose that bd = 0, a(bc)π = 0, c(bc)π = 0 and (bc)πb = 0.

(i) If d ∈ ((1− p)A(1 − p))#, then x ∈ A# and

(11) x# =

[

0 0
0 d#(cb)π

]

+

[

p 0
0 dπ

]

t.

(ii) If d ∈ ((1− p)A(1 − p))qnil, then x ∈ Ad and

xd = t+

∞
∑

n=1

[

0 0
0 dn

]

tn+1.
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Proof. (i) Denote by y the right hand side of (11). By Theorem 2.3 and ddπ = 0,
we get x ∈ Ad and xd = y. We can check that x = x2y and so x# = y.

(ii) This part follows from dd = 0 and Theorem 2.3. �

If we replace the assumption bd = 0 of Theorem 2.3 with dc = 0, we prove
the following theorem.

Theorem 2.4. Let x be defined as in (1), d ∈ ((1 − p)A(1 − p))d and bc ∈
(pAp)#. If

dc = 0, a(bc)π = 0, c(bc)π = 0 and (bc)πb = 0,

then x ∈ Ad and

(12) xd = t

[

p 0
0 dπ

]

+

[

0 −(bc)πa(bc)#bdd

0 (cb)πdd

]

+

∞
∑

n=1

tn+1

[

0 0
0 dπdn

]

,

where t is defined as in (2).

Proof. If x is represented as in (10), then zy = 0. Similarly as in the proof of
Theorem 2.3, by Lemma 1.1, we verify the formula (12). �

As a consequence of Theorem 2.4, we present the next formula for the group
inverse x# involving the group inverse of d.

Corollary 2.3. Let x be defined as in (1), t be defined as in (2), d ∈ ((1 −
p)A(1 − p))# and bc ∈ (pAp)#. If dc = 0, a(bc)π = 0, c(bc)π = 0 and

(bc)πb = 0, then x ∈ A# and

x# = t

[

p 0
0 dπ

]

+

[

0 −(bc)πa(bc)#bd#

0 (cb)πd#

]

.

By Theorem 2.2, we get the following representations for the generalized
Drazin inverse of x.

Theorem 2.5. Let x be defined as in (1), d ∈ ((1 − p)A(1 − p))d and bc ∈
(pAp)#. If

bd = 0, (bc)πa = 0, c(bc)π = 0 and (bc)πb = 0,

then x ∈ Ad and

xd =

[

0 0
−ddc(bc)#a(bc)π dd(cb)π

]

+

[

p 0
0 dπ

]

u

+

∞
∑

n=1

[

0 0
0 dπdn

]

un+1,(13)

where u is defined as in (8).

Proof. Assume that x is presented as in (10), then z ∈ Ad, y ∈ A#, y# = u

and

yπ =

[

(bc)π 0
−c(bc)#a(bc)π (cb)π

]

.
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Since yz = 0, applying Lemma 1.1, we get the representation (13) of xd. �

The next corollary follows directly from Theorem 2.5.

Corollary 2.4. Let x be defined as in (1), u be defined as in (8) and bc ∈
(pAp)#. Suppose that bd = 0, (bc)πa = 0, c(bc)π = 0 and (bc)πb = 0.

(i) If d ∈ ((1− p)A(1 − p))#, then x ∈ A# and

x# =

[

0 0
−d#c(bc)#a(bc)π d#(cb)π

]

+

[

p 0
0 dπ

]

u.

(ii) If d ∈ ((1− p)A(1 − p))qnil, then x ∈ Ad and

xd = u+

∞
∑

n=1

[

0 0
0 dn

]

un+1.

Using the condition dc = 0 instead of bd = 0 in Theorem 2.5, we can obtain
the another formula for xd.

Theorem 2.6. Let x be defined as in (1), d ∈ ((1 − p)A(1 − p))d and bc ∈
(pAp)#. If

dc = 0, (bc)πa = 0, c(bc)π = 0 and (bc)πb = 0,

then x ∈ Ad and

xd = u

[

p 0
0 dπ

]

+

∞
∑

n=1

un+1

[

0 0
0 dπdn

]

+

[

0 0
0 (cb)πdd

]

,

where u is defined as in (8).

We verify the next result by Theorem 2.6.

Corollary 2.5. Let x be defined as in (1), u be defined as in (8), d ∈ ((1 −
p)A(1 − p))# and bc ∈ (pAp)#. If dc = 0, (bc)πa = 0, c(bc)π = 0 and

(bc)πb = 0, then x ∈ A# and

x# = u

[

p 0
0 dπ

]

+

[

0 0
0 (cb)πdd

]

.
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