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BOOLEAN REGULAR MATRICES AND
THEIR STRONGLY PRESERVERS

Seok-Zun Song, Kyung-Tae Kang, and Mun-Hwan Kang

Abstract. An m×n Boolean matrix A is called regular if there exists an
n×m Boolean matrix X such that AXA = A. We have characterizations
of Boolean regular matrices. We also determine the linear operators that
strongly preserve Boolean regular matrices.

1. Introduction

The Boolean algebra [3] is the set B = {0, 1} equipped with two binary
operations, addition, +, and multiplication, ·, defined as follows:

0 + 0 = 0 0 · 0 = 0
0 + 1 = 1 + 0 = 1 0 · 1 = 1 · 0 = 0

1 + 1 = 1 1 · 1 = 1.

For all a, b ∈ B, we suppress the dot of a · b and simply write ab. Let Mm,n(B)
denote the set of all m×n Boolean matrices with entries in the Boolean algebra
B. The usual definitions for addition and multiplication of matrices over fields
are applied to Boolean matrices as well. If m = n, we use the notation Mn(B)
instead of Mm,n(B).

Boolean matrices play an important role in linear algebra, combinatorics,
graph theory and network theory. And many problems in the theory of non-
negative matrices depend only on the distribution of nonzero entries. In such
cases the relevant property of each entry is whether it is zero or nonzero, and
the problem can be often simplified by substituting for the given matrix the
Boolean (0, 1)-matrix.

Several authors characterized those linear operators on Mm,n(B) that (st-
rongly) preserve various properties and functions defined on Mm,n(B) ([1], [9],
[10]).
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In this paper, we study some properties of Boolean regular matrices. We
also determine the linear operators on Mm,n(B) that strongly preserve Boolean
regular matrices.

2. Properties of regularity and singularity of Boolean matrices

The matrix In is the n × n identity matrix, Jm,n is the m × n matrix of
all ones, Om,n is the m × n zero matrix. We will suppress the subscripts on
these matrices when the orders are evident from the context. For any matrix
A ∈Mm,n(B), AT is denoted by the transpose of A. A matrix inMm,n(B) with
only one nonzero entry is called a cell. If the nonzero entry occurs in the ith

row and the jth column, we denote this cell by Ei,j .

Definition. A matrix in Mm,n(B) is called an ith row matrix, denoted by Ri,
if Ri =

∑n
j=1 Ei,j for some i ∈ {1, . . . , m}. Similarly, a matrix in Mm,n(B)

is called a jth column matrix, denoted by Cj , if Cj =
∑m

i=1 Ei,j for some
j ∈ {1, . . . , n}. A line matrix is an ith row matrix or a jth column matrix.

Let A = [ai,j ] be any matrix in Mm,n(B). Then A can be written uniquely
as

∑m
i=1

∑n
j=1 ai,jEi,j , which is called the canonical form of A. If ai,j = 1

for some i and j, then we say that the cell Ei,j is in the matrix A. Since
ai,j ∈ {0, 1}, the canonical form of A shows that A is a sum of cells.

For A = [ai,j ], B = [bi,j ] ∈ Mm,n(B), we say that B dominates A (written
B ≥ A or A ≤ B) if bi,j = 0 implies ai,j = 0 for all i and j. This provides a
reflexive and transitive relation on Mm,n(B).

Definition. Cells E1, E2, . . . , Ek are called collinear if
∑k

i=1 Ei ≤ L for some
line matrix L.

Definition. A matrix A ∈ Mn(B) is said to be invertible if there exists a
matrix B ∈Mn(B) such that AB = BA = In.

In 1952, Luce ([4]) showed that a matrix A ∈ Mn(B) possesses a two-sided
inverse if and only if A is an orthogonal matrix in the sense that AAT = In,
and that, in this case, AT is a two-sided inverse of A. In 1963, Rutherford ([8])
showed that if a matrix A ∈ Mn(B) possesses a one-sided inverse, then the
inverse is also a two-sided inverse. Furthermore such an inverse, if it exists, is
unique and is AT . Also, it is well known that the n× n permutation matrices
are the only n× n invertible Boolean matrices.

The notion of generalized inverse of an arbitrary matrix apparently origi-
nated in the work of Moore ([5]), and the generalized inverses have applications
in network and switching theory and information theory ([2]).

Definition. Let A be a matrix in Mm,n(B). Consider a matrix X ∈Mn,m(B)
in the equation

(2.1) AXA = A.
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If (2.1) has a solution X, then X is called a generalized inverse of A. Further-
more A is called regular if there exists a solution of (2.1); Otherwise, A is called
singular.

Clearly Jm,n and Om,n are regular in Mm,n(B) because Jm,nJn,mJm,n =
Jm,n and Om,nOn,mOm,n = Om,n. In general, a solution of (2.1), although it
exists, is not necessarily unique. For example, consider a matrix A = [ 1 0

0 0 ] ∈
M2(B). Then we can easily show that X = [ 1 a

b c ] ∈ M2(B) are generalized
inverses of A for all a, b, c ∈ B.

The equation (2.1) has been studied by several authors ([5, 6, 7]). Plemmons
([6]) published algorithms for computing generalized inverses of Boolean ma-
trices under certain conditions. Also Rao and Rao ([7]) had characterizations
of regular matrices in Mm,n(B).

Proposition 2.1. Let A be a matrix in Mm,n(B). If U ∈ Mm(B) and V ∈
Mn(B) are invertible, then the following are equivalent:

(1) A is regular in Mm,n(B);
(2) UAV is regular in Mm,n(B);
(3) AT is regular in Mn,m(B);
(4) UAT V is regular in Mn(B) (if m = n).

Proof. It is obvious. ¤
Also we can easily show that

(2.2) A is regular if and only if
[

A O
O B

]
is regular

for all matrices A ∈ Mm,n(B) and for all regular matrices B ∈ Mp,q(B). In
particular, all idempotent matrices in Mn(B) are regular.

Definition. The Boolean rank ([1]), b(A), of a nonzero m× n Boolean matrix
A is defined as the least integer k for which there exist m×k and k×n Boolean
matrices B and C with A = BC. The Boolean rank of a zero matrix is zero.

We can easily obtain that

(2.3) 0 ≤ b(A) ≤ min{m,n} and b(AB) ≤ min{b(A), b(B)}
for all A ∈Mm,n(B) and for all B ∈Mn,q(B).

Let A = [a1 a2 · · · an ] be a matrix in Mm,n(B), where aj is the jth

column of A for all j = 1, . . . , n. Then the column space of A is the set
{∑n

j=1 αjaj

∣∣∣ αj ∈ B}, and denoted by 〈A〉; the row space of A is 〈AT 〉.
Definition. Let A be a matrix in Mm,n(B) with b(A) = k. Then A is said to
be space decomposable if there exist matrices B ∈ Mm,k(B) and C ∈ Mk,n(B)
such that A = BC, 〈A〉 = 〈B〉 and 〈AT 〉 = 〈CT 〉.
Theorem 2.2 ([7]). A is regular in Mm,n(B) if and only if A is space decom-
posable.
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Proposition 2.3. If A is a matrix in Mm,n(B) with b(A) ≤ 2, then A is
regular.

Proof. If b(A) = 0, then A = O is clearly regular. If b(A) = 1, then there exist
permutation matrices P and Q such that PAQ = [ J O

O O ], and hence PAQ is
regular by (2.2). It follows from Proposition 2.1 that A is regular.

Suppose that b(A) = 2. Then there exist m × 2 matrix B = [b1 b2 ] and
2× n matrix C = [c1 c2 ]T such that A = BC, where b1 and b2 are distinct
nonzero columns of B, and c1 and c2 are distinct nonzero columns of CT . Then
we can easily show that all columns of A are of the forms 0,b1,b2 and b1 +b2

so that 〈A〉 = 〈B〉. Similarly, all columns of AT are of the forms 0, c1, c2 and
c1 + c2 so that 〈AT 〉 = 〈CT 〉. Therefore A is space decomposable and hence A
is regular by Theorem 2.2. ¤

The weight of a matrix A in Mm,n(B) is the number of nonzero entries of A
and will be denoted by |A|. The number of elements in a set S is also denoted
by |S|.
Corollary 2.4. Let A be a matrix inMm,n(B) with |A| ≤ 4. Then A is regular.

Proof. By Proposition 2.3, we lose no generality in assuming that b(A) = 3 or
4. Consider a matrix B = [ A O

O 0 ] in Mm+1,n+1(B). Since |A| ≤ 4 and b(A) = 3
or 4, we can easily show that there exist permutation matrices P ∈ Mm+1(B)
and Q ∈ Mn+1(B) such that PBQ = [ C O

O O ] for some idempotent matrix C in
M4(B) with |C| = 3 or 4. By (2.2) and Proposition 2.1, we have that B is
regular and hence A is regular by (2.2). ¤

Example 2.5. Consider a matrix A =
[

1 1 0
0 1 1
0 0 1

]
. Then we can easily show that

b(A) = 3. Now we show that A is not space decomposable. If A is space
decomposable, then there exist 3 × 3 matrices B and C such that A = BC,
〈A〉 = 〈B〉 and 〈AT 〉 = 〈CT 〉. It follows from (2.3) that b(B) = b(C) = 3, and
hence both B and C have neither a zero row nor a zero column. Also, there
exists a permutation matrix P such that A = DE, where D = [di,j ] = BP ,
E = [ei,j ] = PT C and D ≥ I3. Then we have

(2.4) 〈A〉 = 〈B〉 = 〈BP 〉 = 〈D〉
and

(2.5) 〈AT 〉 = 〈CT 〉 = 〈CT P 〉 = 〈ET 〉.
Furthermore we have that

(2.6) E has neither a zero row nor a zero column

because b(E) = b(PT C) = b(C) = 3. From A = DE with a1,3 = a2,1 = a3,1 =
a3,2 = 0, we have e1,3 = e2,1 = e3,1 = e3,2 = 0. It follows from (2.6) that

e1,1 = e3,3 = 1. Thus, E =
[

1 e1,2 0
0 e2,2 e2,3
0 0 1

]
. If e1,2 = 0 or e2,3 = 0, then we have
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e2,2 = 1 by (2.6). Then we have
[

0
1
0

]
∈ 〈ET 〉, while

[
0
1
0

]
/∈ 〈AT 〉, a contradiction

to (2.5). Thus we may assume that e1,2 = e2,3 = 1 so that E =
[

1 1 0
0 e2,2 1
0 0 1

]
. If

e2,2 = 0, then b(E) = 2, a contradiction. Hence e2,2 = 1. It follows from

A = DE that D =
[

1 0 0
0 1 d2,3
0 0 1

]
. In this case,

[
0
1
0

]
∈ 〈D〉, while

[
0
1
0

]
/∈ 〈A〉, a

contradiction to (2.4). Therefore A is not space decomposable.

In the following, we give some properties of Boolean regular matrices.
If A and B are matrices in Mm,n(B), we define A \ B to be the matrix

C = [ci,j ] in Mm,n(B) such that ci,j = 1 if and only if ai,j = 1 and bi,j = 0.
Define an upper triangular matrix Λn in Mn(B) by

Λn = [λi,j ] ≡
( n∑

i≤j

Ei,j

)
\ E1,n =




1 1 · · · 1 0
1 · · · 1 1

. . .
...

...
1 1

1




.

Then the following Lemma shows that Λn is not regular for n ≥ 3.

Lemma 2.6. Λn is regular in Mn(B) if and only if n ≤ 2.

Proof. If n ≤ 2, then Λn is regular by Corollary 2.4.
Conversely, assume that Λn is regular for some n ≥ 3. Then there exists

a nonzero matrix B = [bi,j ] in Mn(B) such that Λn = ΛnBΛn. From 0 =
λ1,n =

∑n−1
i=1

∑n
j=2 bi,j , we obtain that all entries of the second column of

B are zero except for the entry bn,2. From 0 = λ2,1 =
∑n

i=2 bi,1, we have
that all entries of the first column of B are zero except for b1,1. Also, from
0 = λ3,2 =

∑n
i=3

∑2
j=1 bi,j , we obtain that bn,2 = 0. If we combine these three

results, we conclude that all entries of the first two columns are zero except for
b1,1. But we have 1 = λ2,2 =

∑n
i=2

∑2
j=1 bi,j = 0, a contradiction. Hence Λn

is singular for all n ≥ 3. ¤

In particular, Λ3 =
[

1 1 0
0 1 1
0 0 1

]
is singular. By Proposition 2.1, we have that the

lower triangular matrix ΛT
n is singular for n ≥ 3, while Λn + ΛT

n is regular by
Proposition 2.3 because b(Λn + ΛT

n ) = 2. Let

(2.7) Φm,n =
[
Λ3 O
O O

]

for all min{m, n} ≥ 3. Then Φm,n is singular by (2.2).

Corollary 2.7. Let E and F be distinct cells in Mm,n(B) with min{m,n} ≥ 3.
Then there exists a matrix A in Mm,n(B) such that |A| = 3 and A + E + F is
singular in Mm,n(B).
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Proof. Since E and F are distinct cells, there exist permutation matrices P
and Q such that

P (E + F )Q = E1,1 + E1,2, E1,2 + E2,2 or E1,1 + E2,2.

Consider a matrix A ∈Mm,n(B) such that

PAQ = E2,2 + E2,3 + E3,3, E1,1 + E2,3 + E3,3 or E1,2 + E2,3 + E3,3

according as P (E + F )Q = E1,1 + E1,2, E1,2 + E2,2 or E1,1 + E2,2. Then we
have that P (A + E + F )Q = Φm,n is singular in Mm,n(B). Hence A + E + F
is singular in Mm,n(B) by Proposition 2.1. ¤

Corollary 2.8. Let A be a matrix in Mm,n(B) with |A| = 3. If b(A) = 2 or 3,
then there exist cells E and F such that A + E + F is singular.

Proof. Consider the singular matrix Φm,n in (2.7). If b(A) = 2 or 3, then
we can easily show that there exist permutation matrices U and V such that
UAV ≤ Φm,n. Let E′ and F ′ be cells satisfying UAV +E′+F ′ = Φm,n. Then
we obtain that

A + UT E′V T + UT F ′V T = UT Φm,nV T

is singular by Proposition 2.1. If we let E = UT E′V T and F = UT F ′V T , then
the result follows. ¤

Theorem 2.9. For m ≥ 3 and n ≥ 3, let A be a matrix in Mm,n(B) with
|A| = k and b(A) = k, where 0 ≤ k ≤ min{m,n}. Then J \A is regular if and
only if k ≤ 2.

Proof. If k ≤ 2, then there exist permutation matrices P and Q such that
P (J \A)Q = J \ (aE1,1 + bE2,2), where a, b ∈ {0, 1}, and hence

J \ E11 =




1 0
1 1
...

...
1 1




[
0 1 · · · 1
1 1 · · · 1

]
,

J \ E22 =




1 1
1 0
1 1
...

...
1 1




[
1 0 1 · · · 1
1 1 1 · · · 1

]
,

J \ E11 + E22 =




1 0
0 1
1 1
...

...
1 1




[
0 1 1 · · · 1
1 0 1 · · · 1

]
.
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Thus b(J \ A) = b(P (J \ A)Q) ≤ 2. Therefore we have J \ A is regular by
Proposition 2.3.

Conversely, assume that J \ A is regular for some k ≥ 3. It follows from
|A| = k and b(A) = k that there exist permutation matrices U and V such that

U(Jm,n \A)V = J \
k∑

t=1

Et,t.

Let J \ (
∑k

t=1 Et,t) = X = [xi,j ]. By Proposition 2.1, X is regular, and hence
there exists a nonzero matrix B = [bi,j ] ∈ Mn,m(B) such that X = XBX.
Then the (t, t)th entry of XBX becomes

(2.8)
∑

i∈I

∑

j∈J

bi,j

for all t = 1, . . . , k, where I = {1, . . . , n} \ {t} and J = {1, . . . , m} \ {t}. From
x1,1 = 0 and (2.8), we have that

(2.9) bi,j = 0 for all i = 2, . . . , n; j = 2, . . . ,m.

Consider the first row and the first column of B. It follows from x2,2 = 0 and
(2.8) that

(2.10) bi,1 = 0 = b1,j for all i = 1, 3, 4, . . . , n; j = 1, 3, 4, . . . ,m.

Also, from x3,3 = 0, we obtain b1,2 = b2,1 = 0, and hence B = O by (2.9) and
(2.10). This contradiction shows that k ≤ 2. ¤

Proposition 2.10. Let A be a matrix in Mm,n(B) with |A| = 5. If A has a
row or a column that has at least 3 nonzero entries, then A is regular.

Proof. Suppose that A has a row or a column that has at least 3 nonzero
entries. Then we can easily show that b(A) ≤ 3. By Proposition 2.3, we may
assume that b(A) = 3. Then A has either a row or a column that has just
3 nonzero entries. Suppose that a row of A has just 3 nonzero entries. Since
b(A) = 3, there exist permutation matrices U and V such that

UAV = E1,1 + E1,2 + E1,3 + E2,i + E3,j

for some i, j ∈ {1, . . . , n} with i < j. If j ≥ 4, then UAV is regular by
Corollary 2.4 and (2.2), and hence A is regular by Proposition 2.1. If 1 ≤ i <
j ≤ 3, then there exist permutation matrices U ′ and V ′ such that

U ′UAV V ′ =
[
B O
O O

]
,

where B =
[

1 1 1
0 1 0
0 0 1

]
. We can easily show that B is idempotent in M3(B), and

hence B is regular. It follows from (2.2) and Proposition 2.1 that A is regular.
If a column of A has just 3 nonzero entries, a parallel argument shows that

A is regular. ¤
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3. Linear operators that preserve Boolean regular matrices

In this section we have characterizations of the linear operators that strongly
preserve regular matrices over the Boolean algebra.

Definition. An operator T on Mm,n(B) is said to be

(1) linear if T (αA + βB) = αT (A) + βT (B) for all α, β ∈ B and for all
A,B ∈Mm,n(B).

(2) preserve regularity if T (A) is regular whenever A is regular inMm,n(B).

Example 3.1. Let A be any regular matrix in Mm,n(B). Define an operator
T on Mm,n(B) by

T (X) =
( m∑

i=1

n∑

j=1

xi,j

)
A

for all X = [xi,j ] ∈ Mm,n(B). Then we can easily show that T is a linear
operator that preserves regularity because T (X) is either O or A for all X ∈
Mm,n(B). But T does not preserve any singular matrix in Mm,n(B).

Thus, we are interested in a linear operator T on Mm,n(B) such that T (X)
is regular if and only if X is regular over Mm,n(B).

Definition. A linear operator T on Mm,n(B) is said to be strongly preserve
regularity if T (A) is regular if and only if A is regular in Mm,n(B).

Theorem 3.2. Let T be a linear operator on Mm,n(B), where min{m,n} ≤ 2.
Then T strongly preserves all regular matrices.

Proof. If min{m, n} ≤ 2, then all matrices in Mm,n(B) are regular by (2.3) and
Proposition 2.3. Hence T (A) is always regular for all A in Mm,n(B). Thus the
result follows. ¤

Definition. A linear operator T onMm,n(B) is said to be singular if T (X) = O
for some nonzero matrix X in Mm,n(B); Otherwise, T is called nonsingular.

Lemma 3.3. If T is a linear operator on Mm,n(B) that strongly preserves
regularity for m ≥ 3 and n ≥ 3, then T is nonsingular.

Proof. If T (X) = O for some nonzero matrix X in Mm,n(B), then we have
T (E) = O for all cells E ≤ X. Let F be a cell different from E. By Corollary
2.7, there exists a matrix A with |A| = 3 such that A+E +F is singular, while
A + F is regular by Corollary 2.4. Nevertheless, T (A + E + F ) = T (A + F ), a
contradiction to the fact that T strongly preserves regularity. Hence T (X) 6= O
for all nonzero matrix X in Mm,n(B). Therefore T is nonsingular. ¤

For any i ∈ {1, 2, . . . ,mn}, let Si denote a sum of arbitrary distinct i cells in
Mm,n(B) with |Si| = i. Hereafter, we let min{m,n} = α and max{m,n} = β.
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Proposition 3.4. Let T be a linear operator on Mm,n(B) that strongly pre-
serves regularity, where min{m,n} = α ≥ 3. Then we have

|T (Si)| ≤ 2α + i

for all Si ∈Mm,n(B), where i ∈ {1, 2, . . . , α(β − 2)}.
Proof. We lose no generality in assuming that α = m and β = n. Thus we will
show that |T (Si)| ≤ 2m+i for all Si ∈Mm,n(B), where i ∈ {1, 2, . . . ,m(n−2)}.

If i = m(n − 2), then clearly |T (Si)| ≤ mn = 2m + i. For arbitrary i ∈
{1, 2, . . . ,m(n − 2) − 1}, suppose that |T (Si)| ≥ 2m + i + 1 for some Si ∈
Mm,n(B). Then J \ T (Si) dominates at most mn − (2m + i + 1) cells. Thus
we have |T (J) \ T (Si)| ≤ mn − (2m + i + 1). Now for each cell G with G ≤
T (J) \ T (Si), let H be a cell such that G ≤ T (H), and let X be the sum of all
such cells H. Then we have

|X| ≤ |T (J) \ T (Si)| ≤ mn− (2m + i + 1).

Now we claim that T (J) = T (Si) + T (X). It suffices to show T (J) ≤ T (Si) +
T (X). Let G be any cell such that G ≤ T (J). If G ≤ T (Si), then we are done.
If G 6≤ T (Si), then there exists a cell H with H ≤ X such that G ≤ T (H)
by the construction of X. Thus, G ≤ T (H) ≤ T (X). Therefore we have
T (J) ≤ T (Si) + T (X), and hence T (J) = T (Si) + T (X) = T (Si + X).

Since |X + Si| ≤ mn − (2m + 1), there exist distinct cells F1, F2, F3 such
that they are not dominated by X + Si and b(

∑3
j=1 Fj) = 3. It follows from

T (J) = T (X + Si) and X + Si ≤ J \∑3
j=1 Fj that

T (J) = T (X + Si) ≤ T
(
J \

3∑

j=1

Fj

)
≤ T (J),

and hence T (J) = T (J \∑3
j=1 Fj), a contradiction to the fact that T strongly

preserves regularity because J is regular, while J \∑3
j=1 Fj is not regular by

Theorem 2.9. Therefore we have |T (Si)| ≤ 2m + i for all Si. We conclude that
|T (Si)| ≤ 2m + i for all i = 1, 2, . . . , m(n− 2). ¤

The next Lemma will be important in order to show that if E is any cell in
Mm,n(B) with min{m,n} ≥ 3, then T (E) is also a cell for any linear operator
on Mm,n(B) that strongly preserves regularity.

Lemma 3.5. Let min{m,n} = α ≥ 3 and T be a linear operator on Mm,n(B)
that strongly preserves regularity. Then for any h ∈ {0, 1, 2, . . . , 2α}, we have

|T (Si)| ≤ 2α + i− h

for all Si ∈Mm,n(B), where i ∈ {1, 2, . . . , 2α− h + 1}.
Proof. Without loss of generality, we assume that α = m. Thus we will show
that if h ∈ {0, 1, 2, . . . , 2m}, then we have |T (Si)| ≤ 2m + i − h for all Si ∈
Mm,n(B), where i ∈ {1, 2, . . . , 2m− h + 1}.
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The proof proceeds by induction on h. It follows from Proposition 3.4 that
|T (Si)| ≤ 2m+i for all Si ∈Mm,n(B), where i ∈ {1, 2, . . . , 2m+1}. Thus if h =
0, the result is obvious. Next, we assume that for some h ∈ {0, 1, 2, . . . , 2m−1},
the argument is true. That is, we have

(3.1) |T (Si)| ≤ 2m + i− h

for all Si ∈Mm,n(B), where i ∈ {1, 2, . . . , 2m− h + 1}. Now we will show that
|T (Si)| ≤ 2m+ i−h−1 for all Si ∈Mm,n(B), where i ∈ {1, 2, . . . , 2m−h}. For
arbitrary i ∈ {1, 2, . . . , 2m − h}, suppose that |T (Si)| ≥ 2m + i − h for some
Si ∈Mm,n(B). By (3.1), we have

|T (Si)| = 2m + i− h and |T (Si + F )| = 2m + i− h or (2m + i− h) + 1

for all cells F with F 6≤ Si. If |T (Si + F1)| = 2m + i− h for some cell F1 with
F1 6≤ Si, then we have T (Si + F1) = T (Si). Let F2 and F3 be distinct cells
different from F1 such that they are not dominated by Si and b(

∑3
j=1 Fj) = 3.

Then we can select the matrix Y ∈Mm,n(B) such that Si + Y = J \∑3
j=1 Fj ,

and hence Si + Y + F1 = J \ (F2 + F3). It follows from T (Si + F1) = T (Si)
that T (Si + F1) + T (Y ) = T (Si) + T (Y ), equivalently

T
(
J \ (F2 + F3)

)
= T

(
J \

3∑

j=1

Fj

)
,

a contradiction because J \∑3
j=1 Fj is singular, while J \ (F2 + F3) is regular

by Theorem 2.9. Thus we may assume that |T (Si + F )| = (2m + i− h) + 1 for
all cells F with F 6≤ Si. This means that for any cell F with F 6≤ Si, there
exists only one cell CF such that

(3.2) CF 6≤ T (Si), CF ≤ T (F ) and T (Si + F ) = T (Si) + CF

because |T (Si)| = 2m + i− h. Let Em,n be the set of all cells in Mm,n(B) and
let

Ω = {CF |F ∈ Em,n and F 6≤ Si}.
Suppose that CH 6= CF for all distinct cells F and H that are not dominated
by Si. Then we have |Ω| = mn − i. Since CF 6≤ T (Si) for any cell F with
F 6≤ Si, we have |Ω| ≤ mn− (2m + i− h) because |T (Si)| = 2m + i− h. This
is impossible. Hence CH = CF for some distinct cells F and H that are not
dominated by Si. It follows from (3.2) that

(3.3) T (Si + F + H) = T (Si + F ) + T (Si + H) = T (Si) + CF = T (Si + F ).

Let H1 and H2 be distinct cells different from H such that they are not dom-
inated by Si + F and b(H + H1 + H2) = 3. Let Y ′ be the matrix such that
Si+F +Y ′ = J \(H+H1+H2). Then we have Si+F +H+Y ′ = J \(H1+H2).
It follows from (3.3) that

T
(
J \ (H1 + H2)

)
= T

(
J \ (H + H1 + H2)

)
,
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a contradiction because J \ (H1 + H2) is regular, while J \ (H + H1 + H2) is
singular by Theorem 2.9. Consequently, we have |T (Si)| ≤ 2m + i − h for all
Si ∈Mm,n(B), where i ∈ {1, 2, . . . , 2m− h}. Hence the result follows. ¤
Corollary 3.6. Let T be a linear operator on Mm,n(B) that strongly pre-
serves regularity, where min{m,n} ≥ 3. Then T (E) is a cell for all cells E
in Mm,n(B).

Proof. Let h = 2m in Lemma 3.5. Then we have |T (S1)| ≤ 1 for all S1 ∈
Mm,n(B). It follows from Lemma 3.3 that |T (S1)| = 1 for all S1 ∈ Mm,n(B),
equivalently |T (E)| = 1 for any cell E in Mm,n(B). Therefore we have that
T (E) is a cell for any cell E in Mm,n(B). ¤

As shown in Theorem 3.2, if T is a linear operator on Mm,n(B) with min{m,
n} ≤ 2, then T (strongly) preserves regularity because all matrices in Mm,n(B)
are regular by Proposition 2.3.

If min{m, n} ≥ 3, there exists a linear operator on Mm,n(B) such that T
preserves regularity, while T does not strongly preserve regularity, see Exam-
ple 3.1.

The next Lemmas are necessary to prove the main theorem. In the follow-
ings, unless otherwise stated, we assume that T is a linear operator onMm,n(B)
that strongly preserve regularity for min{m,n} ≥ 3.

Lemma 3.7. T is bijective on the set of cells.

Proof. By Corollary 3.6, we suffice to show that T (E) 6= T (F ) for all distinct
cells E and F in Mm,n(B). Suppose that T (E) = T (F ) for some distinct cells
E and F . Then we have T (E + F ) = T (E). By Corollary 2.7, there exists
a matrix A in Mm,n(B) with |A| = 3 such that A + E + F is singular. Since
T (E + F ) = T (E), we have

T (A + E + F ) = T (A + E),

a contradiction to the fact that T strongly preserves regularity because A + E
is regular by Corollary 2.4. Therefore T is bijective on the set of cells. ¤

Let A ∈ Mm,n(B) be a nonzero matrix dominated by a line matrix. Then
we have b(A) = 1. If |A| = s, then we say that A is a s-star matrix. Therefore
all s-star matrices are regular by Proposition 2.3.

Lemma 3.8. T preserves all 3-star matrices.

Proof. Suppose that T does not preserve a 3-star matrix A in Mm,n(B). Then
we have that b(T (A)) = 2 or 3. By Corollary 2.8, there exist cells E and F
such that T (A) + E + F is singular. By Lemma 3.7, we can write E = T (H1)
and F = T (H2) for some cells H1 and H2. Thus we have

T (A) + E + F = T (A + H1 + H2).

But A + H1 + H2 is regular by Proposition 2.10. This contradicts to the fact
that T strongly preserves regularity. Hence T preserves all 3-star matrices. ¤
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Corollary 3.9. T preserves all line matrices.

Proof. Suppose that T does not preserve a line matrix A in Mm,n(B). Then
there exist two cells E and F dominated by A such that two cells T (E) and
T (F ) are not collinear. Let G be a cell such that E +F +G is a 3-star matrix.
By Lemma 3.8, T (E+F +G) is a 3-star matrix, and hence b(T (E+F +G)) = 1.
Thus, the three cells T (E), T (F ) and T (G) are collinear. This contradicts to
the fact that the two cells T (E) and T (F ) are not collinear. Therefore T
preserves all line matrices. ¤

We say that a linear operator T on Mm,n(B) is a (U, V )-operator if there
exist invertible matrices U ∈Mm(B) and V ∈Mn(B) such that either

T (X) = UXV for all X ∈Mm,n(B), or

m = n and T (X) = UXT V for all X ∈Mm,n(B).

We remind that the n× n permutation matrices are the only n× n invertible
Boolean matrices.

Theorem 3.10. Let T be a linear operator on Mm,n(B) with min{m,n} ≥ 3.
Then T strongly preserves regularity if and only if T is a (U, V )-operator.

Proof. The sufficiency follows from Proposition 2.1. To prove the necessity,
assume that T strongly preserves regularity. Then T is bijective on the set of
cells by Lemma 3.7 and T preserves all line matrices by Corollary 3.9. Since
no combination of s row matrices and t column matrices can dominate Jm,n

where s + t = min{m,n} unless s = 0 or t = 0, we have that either

(1) the image of each row matrix is a row matrix and the image of each
column matrix is a column matrix, or

(2) the image of each row matrix is a column matrix and the image of each
column matrix is a row matrix.

If (1) holds, then there exist permutations σ and τ of {1, . . ., m} and {1, . . .,
n}, respectively such that T (Ri) = Rσ(i) and T (Cj) = Cτ(j) for all i = 1, . . . , m
and j = 1, . . . , n. Let U ∈ Mm(B) and V ∈ Mn(B) be permutation (i.e.,
invertible) matrices corresponding to σ and τ , respectively. Then we have

T (Ei,j) = Eσ(i),τ(j) = UEi,jV

for all cells Ei,j in Mm,n(B). Let X =
∑m

i=1

∑n
j=1 xi,jEi,j be any matrix in

Mm,n(B). By the action of T on the cells, we have that T (X) = UXV . If (2)
holds, then m = n and a parallel argument shows that there exist invertible
matrices U and V in Mn(B) such that T (X) = UXT V for all X in Mn(B).
Therefore T is a (U, V )-operator. ¤

Thus, as shown in Theorems 3.2 and 3.10, we have characterizations of the
linear operators that strongly preserve Boolean regular matrices.
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