• Title/Summary/Keyword: Matrix Ring

Search Result 236, Processing Time 0.024 seconds

SOME STRONGLY NIL CLEAN MATRICES OVER LOCAL RINGS

  • Chen, Huanyin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.759-767
    • /
    • 2011
  • An element of a ring is called strongly nil clean provided that it can be written as the sum of an idempotent and a nilpotent element that commute. A ring is strongly nil clean in case each of its elements is strongly nil clean. We investigate, in this article, the strongly nil cleanness of 2${\times}$2 matrices over local rings. For commutative local rings, we characterize strongly nil cleanness in terms of solvability of quadratic equations. The strongly nil cleanness of a single triangular matrix is studied as well.

STRONGLY NIL CLEAN MATRICES OVER R[x]/(x2-1)

  • Chen, Huanyin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.589-599
    • /
    • 2012
  • An element of a ring is called strongly nil clean provided that it can be written as the sum of an idempotent and a nilpotent element that commute. We characterize, in this article, the strongly nil cleanness of $2{\times}2$ and $3{\times}3$ matrices over $R[x]/(x^2-1)$ where $R$ is a commutative local ring with characteristic 2. Matrix decompositions over fields are derived as special cases.

REFLEXIVE PROPERTY SKEWED BY RING ENDOMORPHISMS

  • Kwak, Tai Keun;Lee, Yang;Yun, Sang Jo
    • Korean Journal of Mathematics
    • /
    • v.22 no.2
    • /
    • pp.217-234
    • /
    • 2014
  • Mason extended the reflexive property for subgroups to right ideals, and examined various connections between these and related concepts. A ring was usually called reflexive if the zero ideal satisfies the reflexive property. We here study this property skewed by ring endomorphisms, introducing the concept of an ${\alpha}$-skew reflexive ring, where is an endomorphism of a given ring.

Effect of Mirror Misalignments on Optical Ray Path In a Ring Resonator

  • Lee, Dong-Chan;Lee, Jae-Cheul;Son, Seong-Hyun;Cho, Hyun-Ju
    • Journal of the Optical Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.121-127
    • /
    • 2002
  • The operating principal of a ring laser gyroscope depends on the phase difference for the counter-propagating waves within a closed path. The reflecting mirrors mounted on the monoblock form the traveling waves. The manufacturing accuracy of the monoblock influences the traveling path of ray, the sensitivity of laser resonator for misalignments, and diffraction losses. A 3 $\times$ 3 ray transfer matrix was derived for optical components with centering and squaring errors in a ring resonator. The matrix can be utilized to predict the optical ray paths on the basis of the manufacturing errors of the monoblock as well as the misalignment of mirrors. Then the distance and orientation (o. slope) at the arbitrary plane inside the resonator along the ideal optical path can be calculated from the chain multiplication of the ray transfer matrix for each optical component in one round trip. We also show that the counter-propagating rays In a ring resonator with errors does not coincide in each round trip, which results in gain difference between two beams, and how these errors can be adjusted through the alignment procedure. Finally this 3 $\times$ 3 ray matrix formalism can be used to calculate the beam size and its displacement from the optical axis and the deviation at the diaphragm.

Certain Clean Decompositions for Matrices over Local Rings

  • Yosum Kurtulmaz;Handan Kose;Huanyin Chen
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.4
    • /
    • pp.561-569
    • /
    • 2023
  • An element a ∈ R is strongly rad-clean provided that there exists an idempotent e ∈ R such that a - e ∈ U(R), ae = ea and eae ∈ J(eRe). In this article, we completely determine when a 2 × 2 matrix over a commutative local ring is strongly rad clean. An application to matrices over power-series is also given.

A QUESTION ON ⁎-REGULAR RINGS

  • Cui, Jian;Yin, Xiaobin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1333-1338
    • /
    • 2018
  • A ${\ast}-ring$ R is called ${\ast}-regular$ if every principal one-sided ideal of R is generated by a projection. In this note, several characterizations of ${\ast}-regular$ rings are provided. In particular, it is shown that a matrix ring $M_n(R)$ is ${\ast}-regular$ if and only if R is regular and $1+x^*_1x_1+{\cdots}+x^*_{n-1}x_{n-1}$ is a unit for all $x_i$ of R; which answers a question raised in the literature recently.

A PROOF ON POWER-ARMENDARIZ RINGS

  • Kim, Dong Hwa;Ryu, Sung Ju;Seo, Yeonsook
    • Korean Journal of Mathematics
    • /
    • v.21 no.1
    • /
    • pp.29-34
    • /
    • 2013
  • Power-Armendariz is a unifying concept of Armendariz and commutative. Let R be a ring and I be a proper ideal of R such that R/I is a power-Armendariz ring. Han et al. proved that if I is a reduced ring without identity then R is power-Armendariz. We find another direct proof of this result to see the concrete forms of various kinds of subsets appearing in the process.

ON PARTIAL-ARMENDARIZ RINGS

  • Nam, Sang Bok;Piao, Zhelin;Yun, Sang Jo
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.719-727
    • /
    • 2019
  • This article concerns a generalization of Armendariz rings that is done by restricting the degree to one. We shall call such rings, as to satisfy this property, partial-Armendariz. We first show that partial-Armendariz rings are between Armendariz rings and weak Armendariz rings. The basic structures of partial-Armendariz rings are investigated, and the relations between partial-Armendariz rings and near related ring properties are also studied.

MATRIX RINGS AND ITS TOTAL RINGS OF FRACTIONS

  • Lee, Sang-Cheol
    • Honam Mathematical Journal
    • /
    • v.31 no.4
    • /
    • pp.515-527
    • /
    • 2009
  • Let R be a commutative ring with identity. Then we prove $M_n(R)=GL_n(R)$ ${\cup}${$A{\in}M_n(R)\;{\mid}\;detA{\neq}0$ and det $A{\neq}U(R)$}${\cup}Z(M-n(R))$ where U(R) denotes the set of all units of R. In particular, it will be proved that the full matrix ring $M_n(F)$ over a field F is the disjoint union of the general linear group $GL_n(F)$ of degree n over the field F and the set $Z(M_n(F))$ of all zero-divisors of $M_n(F)$. Using the result and universal mapping property we prove that $M_n(F)$ is its total ring of fractions.

ADMISSIBLE BALANCED PAIRS OVER FORMAL TRIANGULAR MATRIX RINGS

  • Mao, Lixin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1387-1400
    • /
    • 2021
  • Suppose that $T=\(\array{A&0\\U&B}\)$ is a formal triangular matrix ring, where A and B are rings and U is a (B, A)-bimodule. Let ℭ1 and ℭ2 be two classes of left A-modules, 𝔇1 and 𝔇2 be two classes of left B-modules. We prove that (ℭ1, ℭ2) and (𝔇1, 𝔇2) are admissible balanced pairs if and only if (p(ℭ1, 𝔇1), h(ℭ2, 𝔇2) is an admissible balanced pair in T-Mod. Furthermore, we describe when ($P^{C_1}_{D_1}$, $I^{C_2}_{D_2}$) is an admissible balanced pair in T-Mod. As a consequence, we characterize when T is a left virtually Gorenstein ring.