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ABSTRACT. An element a € R is strongly rad-clean provided that there exists an idem-
potent e € R such that a — e € U(R), ae = ea and eae € J(eRe). In this article, we
completely determine when a 2 X 2 matrix over a commutative local ring is strongly rad
clean. An application to matrices over power-series is also given.

1. Introduction

An element a € R is strongly clean provided that it is the sum of an idempotent
and a unit that commutes. A ring R is strongly clean provided that every element
in R is strongly clean. A ring R is local if it has only one maximal right ideal.
As is well known, a ring R is local if and only if for any x € R, x or 1 — x is
invertible. Strongly clean matrices over commutative local rings was extensively
studied by many authors from very different view points (see [1, 2, 3,5, 6,7, 8,9,
10, 11]). Recently, a related cleanness of triangular matrix rings over abelian rings
was studied by Diesl et al. (see [9]).

Following Diesl, we say that a € R is strongly rad-clean provided that there
exists an idempotent e € R such that a —e € U(R), ae = ea and eae € J(eRe) (see
[9]). A ring R is strongly rad-clean provided that every element in R is strongly
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rad-clean. Strongly rad-clean rings form a natural subclass of strongly clean rings
which have stable range one (see [4]). Let M be a right R-module, and let ¢ €
endr(M). Then we include a relevant diagram to reinforce the theme of direct sum
decompositions:

M = A & B
pl= Loy
M = A & B

If such diagram holds we call this is an AB-decomposition for ¢. It turns out by [2,
Lemma 40] that ¢ is strongly m-regular if and only if there is an AB-decomposition
with ¢|p € N(end(B)) (the set of nilpotent elements).

Further, ¢ is strongly rad-clean if and only if there is an A B-decomposition with
vlp € J(end(B)) (the Jacobson radical of end(B)). Thus, strong rad-cleanness
can be seen as a natural extension of strong w-regularity. In [2, Theorem 12], the
authors gave a criterion to characterize when a square matrix over a commutative
local ring is strongly clean. We extend this result to strongly rad-clean matrices
over a commutative local ring. We completely determine when a 2 x 2 matrix over a
commutative local ring has such clean decomposition related to its Jacobson radical.
Application to the matrices over power-series is also studied.

Throughout, all rings are commutative with an identity and all modules are
unitary left modules. Let M be a left R-module. We denote the endomorphism
ring of M by end(M) and the automorphism ring of M by aut(M), respectively.
The characteristic polynomial of A is the polynomial x(A4) = det(¢tl, — A). We
always use J(R) to denote the Jacobson radical and U(R) is the set of invertible
elements of a ring R. Ms(R) stands for the ring of all 2 x 2 matrices over R, and
GL2(R) denotes the 2-dimensional general linear group of R.

2. Main Results

In this section, we study the structure of strongly rad-clean elements in vari-
ous situations related to ordinary ring extensions which have roles in ring theory.
We start with a well known characterization of strongly rad-clean element in the
endomorphism ring of a module M.

Lemma 2.1. Let E = end(rM), and let « € E. Then the following are equivalent:
(1) a € E is strongly rad-clean.

(2) There exists a direct sum decomposition M = P ® @Q where P and Q are
a-invariant, and a|p € aut(P) and a|qg € J(end(Q)).
Proof. See [4, Proposition 4.1.2]. O

Lemma 2.2. Let R be a ring, let M be a left R-module. Suppose that x,y,a,b €
end(rRM) such that za + yb = 1y, 2y = yr = 0,ay = ya and b = bx. Then
M = ker(z) ® ker(y) as left R-modules.

Proof. See [2, Lemma 11]. O
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A commutative ring R is projective-free if every finitely generated projective
R-module is free. Evidently, every commutative local ring is projective-free. We
now derive

Lemma 2.3. Let R be projective-free. Then A € My(R) is strongly rad-clean if and
only if A € GLy(R), or A € J(M3(R)), or A is similar to diag(c, B) with o € J(R)
and g € U(R).

Proof. = Write A = E + U,E? = E,U € GLs(R),EA = AE € J(My(R)).
Since R is projective-free, there exists P € GL,(R) such that PEP™! =
diag(0,0),diag(1,1) or diag(1,0). Then (i) PAP~! = PUP~; hence, A € GLa(R),
(ii) (PAP Y)diag(1,1) = diag(1,1)(PAP~1) € J(M2(R), and so A € J(M3(R)).
(3) (PAP~1)diag(1,0) = diag(1,0)(PAP~1) € J(Ms(R) and PAP~' —diag(1,0) €
GL32(R). Hence, PAP™! = Lcl Z ) with @ € J(R),b = ¢ =0 and d € UR).
Therefore A is similar to diag(c, 8) with a € J(R) and g € U(R).

— If Ae GLy(R) or A € J(MQ(R)), then A is strongly rad-clean. We now

assume that A is similar to diag(e, 8) with o € J(R) and 8 € U(R). Then A is
o 10 a—1 0
similar to ( 0 0 ) + ( 0 3 ) where
a—1 0
( 0 8 ) S GLQ(R)7
a—1 0\/1 0\ (1
0 B 00)=Lo

Therefore A € M2(R) is strongly rad-clean. a

o e
= o
N——
oS O

Theorem 2.4. Let R be projective-free. Then A € Ms(R) is strongly rad-clean if
and only if

(1) A€ GLy(R)), or

(2) A€ J(Mz(R)), or

(3) 22 =tr(A)x — detA has roots a € U(R), 3 € J(R).
Proof. = By Lemma 2.3, A € GLy(R), or A € J(M3(R)), or A is similar to a
matrix < . g > where o € J(R) and 8 € U(R). Then y(A) = (z — a)(z — f)

has roots a € U(R), 8 € J(R).
<= 1If (1) or (2) holds, then A € My(R) is strongly rad-clean. If (3) holds, we
assume that x(A) = (t — a)(t — 8). Choose X = A — aly and Y = A — SI5. Then

X(ﬁ — CY)_IIQ — Y(B — a)_1[2 = 127
XY =YX =0,X(f—a) 'L=(f—a) 'LX,
(,8 — Oé)ilfgy = Y(B — a)illg.
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By virtue of Lemma 2.2, we have 2R = ker(X) @ ker(Y). For any x € ker(X), we
have (z)AX = (z)XA =0, and so (x)A € ker(X). Then ker(X) is A-invariant.
Similarly, ker(Y) is A-invariant. For any x € ker(X), we have 0 = (2)X = (z)(A—
aly); hence, (z)A = (z)al,. By hypothesis, we have Alxe.(x) € J(end(ker(X))).
For any y € ker(Y'), we prove that

0=(yY = (y)(4 - BL).
This implies that (y)A = (y)(BIz). Obviously, Alxer(v) € aut(ker(Y)). Therefore
A € Ms(R) is strongly rad-clean by Lemma 2.1. O
We have accumulated all the information necessary to prove the following.

Theorem 2.5. Let R be a commutative local ring, and let A € My(R). Then the
following are equivalent:
(1) A € My(R) is strongly rad-clean.
(2) A € GLy(R) or A € J(M3(R)), ortrA € U(R) and the quadratic equation
P +x= —ff«fﬁ has a root in J(R).
(3) A € GLa(R) or A € J(Ms(R)), or trA € U(R),detA € J(R) and the

quadratic equation x* + x = % is solvable.

Proof. (1) = (2) Assume that A ¢ GLy(R) and A ¢ J(Mz(R)). By virtue of
Theorem 2.4, trA € U(R) and the characteristic polynomial x(A) has a root in

J(R) and a root in U(R). According to Lemma 2.3, A is similar to ( S 2 >,

where A € J(R),pn € U(R). Clearly, y?> — (A + u)y + A = 0 has a root X in J(R).
Hence so does the equation

A+ P —y=—-A+p) A
Set z = (A + p)~'y. Then
A+ w)2® = AN+ p)z=—(\+p) A

That is, 22 — 2 = —(A + ) ~2Ap. Consequently, 22 — z = —% has a root in J(R).
Let # = —z. Then 22 4+ 2 = — ¢4 has a root in J(R).

tr2 A
(2) = (3) By hypothesis, we prove that the equation y? 2— y = —tdfﬁﬁ has a
root a € J(R). Assume that trA € U(R). Then (a(2a —1)7")" = (a(2a —1)71) =
detA _ detA _ detA :
oA (202 —a) 1) | A (—a(rA)2detat1) | OPA-dderA” Therefore the equation
Y-y = % is solvable. Let = —y. Then 2% + = = % is solvable.
(3) = (1) Suppose A ¢ GL2(R) and A ¢ J(Mz(R)). Then trA € U(R),detA €
J(R) and the equation 2? + 2 = 44 has a root. Let y = —z. Then
y? — y% has a root @ € R. Clearly, b :== 1 —a € R is a root of this
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equation. As a®> —a € J(R), we see that either a € J(R) or 1 —a € J(R). Thus,
2a—1=1-2(1—a) € U(R). It is easy to verify that (a(2a—1)_1trA)2—trA-(a(2a—
1)*1trA)+detA = f%eretA = 0. Thus the equation y>—trA-y+detA = 0
has roots a(2a—1)"1trA and b(2b—1)"1trA. Since ab € J(R), we see that a+b = 1
and either a € J(R) or b € J(R). Therefore y?> — trA -y + detA = 0 has a root in
U(R) and a root in J(R). Since R is a commutative local ring, it is projective-free.
By virtue of Theorem 2.4, we obtain the result. O

Corollary 2.6. Let R be a commutative local ring, and let A € Ma(R). Then the
following are equivalent:

(1) A e My(R) is strongly clean.
(2) I — A € GLy(R) or A € Ma(R) is strongly rad-clean.
Proof. (2) = (1) is trivial.

(1) = (2) In view of [3, Corollary 16.4.33], A € GLy(R), or I — A € GLy(R)
or trA € U(R),detA € J(R) and the quadratic equation

2 _ _ detA 2 _ _ detA :
T° — T = i iy is solvable. Hence x° 4 & = 51%7—~ is solvable. According
to Theorem 2.5, we complete the proof. ]

Corollary 2.7. Let R be a commutative local ring. If% € R, then the following
are equivalent:

(1) A € My(R) is strongly rad-clean.

(2) A € GLy(R) or A € J(M2(R)), or trA € U(R),detA € J(R) and tr?A —
4detA is square.

Proof. (1) = (2) According to Theorem 2.5, A € GLy(R) or A € J(Mz(R)),
or trA € U(R),detA € J(R) and the quadratic equation 22 — z = 24— is
solvable. If a € R is the root of the equation, then (2a — 1)? = 4(a® —a) +1 =

% € U(R). As in the proof of Theorem 2.5 , 2a — 1 € U(R). Therefore

tr?A — 4detA = (trA - (2a —1)~1)*,
(2) = (1) If trA € U(R),detA € J(R) and tr*A — 4detA = u? for some u € R,

then u € U(R) and the equation 2? + z = ;24 has a root —3u~1(trA4 + u).
By virtue of Theorem 2.5, A € M5(R) is strongly rad-clean. ]

Every strongly rad-clean matrix over a ring is strongly clean. But there exist
strongly clean matrices over a commutative local ring which is not strongly rad-clean
as the following shows.

Example 2.8. Let R = Z4, and let A = < g g € M>(R). R is a commutative
. 10 1 . "
local ring. Then A = 0 1 + 0 1 )82 strongly clean decomposition.

Thus A € Ms(R) is strongly clean. If A € My(R) is strongly rad-clean, there
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exist an idempotent E € M3(R) and an invertible U € My(R) such that A = E +
U,EA = AE and EAE € J(M(R)). Hence, AU = A(A— E) = (A— E)A=UA,
and then E = A — U € GLy(R) as A* = 0. This implies that £ = I3, and so
EAE = A ¢ J(Mz(R)), as J(R) = 2R. This gives a contradiction. Therefore
A € My(R) is not strongly rad-clean.

Following Cui and Chen, an element a € R is quaspolar if there exists an idem-
potent e € comm(a) such that a + e € U(R) and ae € RI™ (see [6]). Obviously,
A is strongly J-clean = A is strongly rad-clean = A is quasipolar. But the con-
verses are not true, as the following shows:

Example 2.9. (1) Let R be a commutative local ring and A = ( 1 (1) ) be

in Ms(R). Since A € GLy(R), by Lemma 2.3, it is strongly rad-clean but is not
strongly J-clean, as Iy — A & J(Mz(R)).

(2) Let R = Z(3) and A = < _21 1 ) Then trA = 3 € J(R) and detA =

3 € J(R). Hence A is quasipolar by [5, Theorem 2.6]. Note that trA ¢ U(R),
A ¢ GLy(R) and A ¢ J(M3(R)). Thus, A is not strongly rad-clean, in terms of
Corollary 2.7.

Set Bia(a) = < (1) ClL ) and Boi(a) = ( clz (1) ) We now derive

Theorem 2.10. Let R be a commutative local ring. Then the following are equiv-
alent:

(1) Every A € Mx(R) with invertible trace is strongly rad-clean.
(2) For any X\ € J(R),pu € U(R), the quadratic equation x* = ux + X is solvable.

Proof. (1) = (2) Let A € J(R),u € U(R). Choose A = ( (1) _ﬂ)\ ) Then
A € M(R) is strongly rad clean. Obviously, A ¢ GLy(R) and A & J(Mz(R)). In

view of Theorem 2.4, we see that the quadratic equation 22 = pux + X is solvable.
(2) = (1) Let A= ( CCL Z ) with tr(A) € U(R).
Case I. ¢ € U(R). Then
; -1 —1 . —1 0 =X
diag(e,1)Bia(—ac™")ABya(ac™ " )diag(c™",1) = -

for some A\, € R. If A € U(R), then A € GL2(R), and so it is strongly rad-clean.
If A € J(R), then p € U(R). Then A is strongly rad-clean by Theorem 2.5.
Case II. b € U(R). Then

(Fo)alo)=(5a)
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and the result follows from Case I.
Case III. ¢,b € J(R),a —d € U(R). Then

a+b b
Ban(=1)ABx (1) = < c—a+d—b d—b)

where a —d + b — ¢ € U(R); hence the result follows from Case 1.
Case IV. ¢,b € J(R),a,d € U(R). Then

_ a b
Byi(—ca™ ')A = ( 0 d—ca b >;

hence, A € GLy(R).
Case V. ¢,b,a,d € J(R). Then A € J(M>(R)), and so tr(A) € J(R), a contradic-
tion.

Therefore A € M,(R) with invertible trace is strongly rad-clean. a

Example 2.11. Let R = Z4. Then R is a commutative local ring. For any
A € J(R),u € U(R), we directly check that the quadratic equation 22 = px + \ is
solvable. Applying Theorem 2.10, every 2 x 2 matrix over R with invertible trace
is strongly rad-clean. In this case, M>(R) is not strongly rad-clean.

Example 2.12. Let R = Zs be the ring of 2-adic integers. Then every 2 x 2 matrix
with invertible trace is strongly rad-clean.

Proof. Obviously, R is a commutative local ring. Let A € J(R),u € U(R). Then

(1) A € My(R) is strongly clean, by [5, Theorem 3.3]. Clearly, det(A) =
—A € J(R). As R/J(R) = Zo, we see that u € 1 4+ J(R), and then det(4A — I1) =
1—X—p € J(R). In light of [5, Lemma 3.1], the equation x? = px + X is solvable.
This completes the proof, by Theorem 2.10. O

We note that matrix with non-invertible trace over commutative local rings

1 ) € Mg(zg) is not

maybe not strongly rad-clean. For instance, A = ( 11

strongly rad-clean.

3. Applications

We now apply our preceding results and investigate strongly rad-clean matrices
over power series over commutative local rings.

Lemma 3.1. Let R be a commutative ring, and let A(zy, -+ ,x,) € Ma(R[[z1,
- xn]]). Then the following hold:

(1) A(z1,--+,2n) € GLa(R[[z1,- -+ ,xn]]) if and only if A(0,---,0) € GL2(R).
(2) A(z1,-+,@n) € J(Ma2(R[[z1,- - ,x4]])) if and only if A0,---,0) € J(M2(R)).
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Proof. (1) We suffice to prove for n = 1. If A(z1) € GLa(R[[z1]]), it is easy to
verify that A(0) € GLy(R). Conversely, assume that A(0) € GL2(R). Write

Y airy Y birg
A(xl) — io:o() ‘ iO:oO ‘ ,

St > did

i=0 i=0

aop  bo
co do
cobo + x1f(x1), which is a unit plus an element of the radical of R[[x1]]. Thus,
A(z1) € GLy(R[[x1]]), as required.

where A(0) = . We note that the determinant of A(z1) is apdy —

(2) Tt is immediate from (1). O
Theorem 3.2. Let R be a commutative local ring, and let A(xy, - ,x,) €
My (R[[x1, -+ ,x,]]). Then the following are equivalent:

(1) Az, ,3,) € Ma(R[[w1, -+ ,x,]]) is strongly rad-clean.
(2) A(z1,-,2,) € Ma(R[[z1,- -+ 2]/ (@™ -+ 2)) is strongly rad-clean.
(3) A(0,---,0) € Ma(R) is strongly rad-clean.

Proof. (1) = (2) and (2) = (3) are obvious.

(3) = (1) It will suffice to prove for n = 1. Set z = z;. Clearly, R][z]] is
a commutative local ring. Since A(0) is strongly clean in Ms(R), it follows from
Theorem 2.4 that A(0) € GL2(R), or A(0) € J(M2(R)), or x(A(0)) has a root
o € J(R) and a root 3 € U(R). If A(0) € GL2(R) or A(0) € J(Mz(R)), in
view of Lemma 3.1, A(z) € GLa(R[[z]]) or A(z) € J(Mz(R][[z]])). Hence, A(z) €
M, (R[[z]]) is strongly rad-clean. Thus, we may assume that x (A(0)) = t* + ut + A
has a root @ € J(R) and a root 8 € U(R)

Write x(A(z)) = 2 + p(x)t + M) where p(z) = Zulx Az) = Z)\x €

R][x]] and po = p, Ao = A. Let by = . It is easy to Verlfy that to = a+ﬂ E U(R).
Hence, 2by + po € U(R). Choose

b = (2bo + p10) (=M1 — pubo),
by = (200 + p10) " (A2 — paby — pabo — b7),

Then y = ioj biz' € Rl[z]] is a root of x(A(z)). In addition, y € J(R[[z]]) as

i=0
by € J(R). Since y*>+ p(x)y+A(z) = 0, we have X(A(x)) = (t y)(t+y)+p(t—y) =
(t—y)(t+y+p). Set z=—y—p. Then z € U(R[[z]]) as p € U(R[[z]]). Therefore

x(A(z)) has a root in J(R[[z]]) and a root in U( [[]]). Accordlng to Theorem
4, A(x) € My(R[[z]]) is strongly rad-clean, as asserted. O
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Corollary 3.3. Let R be a commutative local ring. Then the following are equiva-
lent:

(1) Every A € Ma(R) with invertible trace is strongly rad-clean.

(2) Bvery A(zy, -+ ,xn) € Ma(R[[z1,- -+ ,xy]]) with invertible trace is strongly
rad-clean.

Proof. (1) = (2) Let A(zq,-- ,2n) € Ma(R[[z1, -+ ,2,]]) with invertible trace.
Then trA(0,---,0) € U(R). By hypothesis, A(0,---,0) € Ma(R) is strongly rad-
clean. In light of Theorem 2.4, A(zy, -+ ,x,) € Ma(R[[x1,- - ,zy]]) is strongly
rad-clean.

(2) = (1) is obvious. O

References

[1] D. D. Anderson and V. P. Camillo, Commutative rings whose elements are a
sum of a unit and idempotent, Comm. Algebra, 30(7)(2002), 3327-3336.

[2] G. Borooah, A. J. Diesl and T. J. Dorsey, Strongly clean matriz rings over
commutative local rings, J. Pure Appl. Algebra, 212(1)(2008), 281-296.

[3] S. Breaz, Matrices over finite fields as sums of periodic and nilpotent elements,

Linear Algebra Appl., 555(2018), 92-97.

[4] H. Chen, Rings Related to Stable Range Conditions, Series in Algebra 11, World
Scientific, Hackensack, NJ, 2011.

[5] J. Cui and J. Chen, When is a 2 x 2 matriz ring over a commutative local ring
quasipolar?, Comm. Algebra, 39(9)(2011), 3212-3221.

[6] P. Danchev, Certain properties of square matrices over fields with applications
to rings, Rev. Colombiana Mat., 54(2)(2020), 109-116.

[7] P. Danchev, E. Garcia and M. G. Lozano, Decompositions of matrices into
potent and square-zero matrices, Internat. J. Algebra Comput., 32(2)(2022),
251-263.

[8] A. J. Diesl and T. J. Dorsey, Strongly clean matrices over arbitrary rings, J.
Algebra, 399(2014), 854-869.

[9] Y. Li, Strongly clean matriz rings over local rings, J. Algebra, 312(1)(2007),
397-404.

[10] J. Ster, On expressing matrices over Zs as the sum of an idempotent and a
nilpotent, Linear Algebra Appl., 544(10)(2018), 339-349.

[11] G. Tang, Y. Zhou, H. Su, Matrices over a commutative ring as sums of three
idempotents or three involutions, Linear Multilinear Algebra, 67(2)(2019),
267-277.



