Browse > Article
http://dx.doi.org/10.4134/CKMS.c180249

ON PARTIAL-ARMENDARIZ RINGS  

Nam, Sang Bok (Department of Computer Engineering Kyungdong University)
Piao, Zhelin (Department of Mathematics Yanbian University)
Yun, Sang Jo (Department of Mathematics Dong-A University)
Publication Information
Communications of the Korean Mathematical Society / v.34, no.3, 2019 , pp. 719-727 More about this Journal
Abstract
This article concerns a generalization of Armendariz rings that is done by restricting the degree to one. We shall call such rings, as to satisfy this property, partial-Armendariz. We first show that partial-Armendariz rings are between Armendariz rings and weak Armendariz rings. The basic structures of partial-Armendariz rings are investigated, and the relations between partial-Armendariz rings and near related ring properties are also studied.
Keywords
partial-Armendariz ring; Armendariz ring; weak Armendariz ring; polynomial ring; reduced ring; matrix ring;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272. https://doi.org/10.1080/00927879808826274   DOI
2 R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), no. 8, 3128-3140. https://doi.org/10.1016/j.jalgebra.2008.01.019   DOI
3 R. Antoine, Examples of Armendariz rings, Comm. Algebra 38 (2010), no. 11, 4130-4143. https://doi.org/10.1080/00927870903337968   DOI
4 E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470-473.   DOI
5 H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368. https://doi.org/10.1017/S0004972700042052   DOI
6 G. M. Bergman, Modules over coproducts of rings, Trans. Amer. Math. Soc. 200 (1974), 1-32. https://doi.org/10.2307/1997246   DOI
7 G. M. Bergman, Coproducts and some universal ring constructions, Trans. Amer. Math. Soc. 200 (1974), 33-88. https://doi.org/10.2307/1997247   DOI
8 K. R. Goodearl, von Neumann Regular Rings, Monographs and Studies in Mathematics, 4, Pitman (Advanced Publishing Program), Boston, MA, 1979.
9 C. Huh, H. K. Kim, and Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Algebra 167 (2002), no. 1, 37-52. https://doi.org/10.1016/S0022-4049(01)00149-9   DOI
10 J. Han, T. K. Kwak, C. I. Lee, Y. Lee, and Y. Seo, Generalizations of reversible and Armendariz rings, Internat. J. Algebra Comput. 26 (2016), no. 5, 911-933. https://doi.org/10.1142/S0218196716500387   DOI
11 C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761. https://doi.org/10.1081/AGB-120013179   DOI
12 Y. C. Jeon, H. K. Kim, Y. Lee, and J. S. Yoon, On weak Armendariz rings, Bull. Korean Math. Soc. 46 (2009), no. 1, 135-146. https://doi.org/10.4134/BKMS.2009.46.1.135   DOI
13 D. W. Jung, N. K. Kim, Y. Lee, and S. P. Yang, Nil-Armendariz rings and upper nilradicals, Internat. J. Algebra Comput. 22 (2012), no. 6, 1250059, 13 pp. https://doi.org/10.1142/S0218196712500592
14 N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477-488. https://doi.org/10.1006/jabr.1999.8017   DOI
15 N. K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), no. 1-3, 207-223. https://doi.org/10.1016/S0022-4049(03)00109-9   DOI
16 M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. http://projecteuclid.org/euclid.pja/1195510144   DOI
17 T.-K. Lee and T.-L. Wong, On Armendariz rings, Houston J. Math. 29 (2003), no. 3, 583-593.