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The operating principal of a ring laser gyroscope depends on the phase difference for the counter-
propagating waves within a closed path. The reflecting mirrors mounted on the monoblock form
the traveling waves. The manufacturing accuracy of the monoblock influences the traveling path of
ray, the sensitivity of laser resonator for misalignments, and diffraction losses.

A 3 x 3 ray transfer matrix was derived for optical components with centering and squaring
errors in a ring resonator. The matrix can be utilized to predict the optical ray paths on the
basis of the manufacturing errors of the monoblock as well as the misalignment of mirrors. Then
the distance and orientation (or slope) at the arbitrary plane inside the resonator along the ideal
optical path can be calculated from the chain multiplication of the ray transfer matrix for each
optical component in one round trip. We also show that the counter-propagating rays in a ring
resonator with errors does not coincide in each round trip, which results in gain difference between
two beams, and how these errors can be adjusted through the alignment procedure. Finally this
3 x 3 ray matrix formalism can be used to calculate the beam size and its displacement from the
optical axis and the deviation at the diaphragm.

OCIS codes : 080.2740, 200.0210, 220.0220, 220.4830, 220.4880.

1. INTRODUCTION

One of the most expensive and difficult parts in the
ring laser gyroscope is to manufacture a monoblock
(in order words, one body block), where the mirrors
are mounted to form a resonator. The manufactur-
ing accuracy of the monoblock influences the optical
beam path in the resonator, misalignments sensitivity,
and diffraction losses. The deviations of the angle be-
tween mirror mounted planes, the mismatch of cross
points of channel axes with planes, and the deviations
of the angle between the axes of channel and planes are
the errors in manufacturing monoblocks. In an ideal
case, the ray path in a resonator coincides with the
reference optical axis, However, in fact, misaligned el-
ements with centering and squaring error exist. The
effective optical axis is changed in a zigzag fashion,
shifting or bending from plane to plane within the pe-
riodic round trip. Moreover, the ray axis propagating
clockwise and counter-clockwise may not lie on the
same path. Here a ray is defined as the path that
the center of a very slowly diverging electromagnetic
beam would take as it goes through the system.

In 1969, Ishchenko presented the geometrical de-
scriptions of an optical path due to the mirror mis-
alignments in a ring resonator, which results from the
imperfect construction and mounting of the optical
elements [1]. His description helps one understand
the misalignment effects of elements in the ray path.
However, since the geometrical descriptions need to
change for the various optical mounting systems, the
sequential derivations of ray path are difficult.

The ray transfer matrix [2] can be utilized in order
to solve this difficulty in a concrete way. We introduce
3 x 3 matrix formalism in tracing the ray path along
the optical components with centering and squaring
errors and show how this can be used to calculate the
displacement and orientation in a closed optical sys-
tem. Then the 3 x 3 matrix for the optical compo-
nents such as a curved mirror with tilt and displace-
ment is derived in a ring resonator with 4 mirrors,
as an example. These matrices are multiplied in se-
quence as they are encountered, until one round trip
is made. Depending on the starting reference plane in
the path, this total matrix is different, and, it is used
to calculate the displacement and slope at the plane,
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and the beam size. The simulation result will be given
for a square ring resonator with the total length of 16
cm.

II. MATRIX REPRESENTATION OF AN
OPTICAL SYSTEM WITH MISALIGNMENTS

In an ideal optical system, the 2 x 2 ray matrix
as shown in Fig. 1 is used to represent input-output
characteristics in the displacement and orientation (or
slope) of a ray, which assumes that all the paraxial el-
ements are properly aligned and centered with respect
to optical axis [3].

()-(aa)z) o
Pit1 Ci Dy (o8

For example, in free space propagation of interval (or
distance) L,A=1,B=L,C=0,and D = 1.

In a real system, however, the position of the op-
tical axis may be slightly displaced from its assumed
position by a small distance AXj, and the exact di-
rection in which the optical axis is pointing deviates
slightly from its assumed direction by a small angle
A¢; [2]. This effect can occur if one of the optical
components has not been properly centered. Under
these circumstances, the 3 x 3 ray transfer matrix
can be introduced as shown in Eq. (2),

Xiv1 A; B, AX; X; X;

$iv1 p=|Ci D; A¢; b p=M;< o

1 0 0 1 1 1
(2)

Now consider an optical system for which the multi-
plication of the transfer matrix gives the overall aug-
mented matrix, Mt,,

Mty = MMy, _q---M; - - MsMo M, (3)
Ai B; AX,
where M; = | C; D; Ad¢; | is the unimodular ma-

0 0 1
trix representing transfer from i** intermediate refer-
ence plane to the (i + 1)®* . If we assume that the
overall augmented matrix Mt, represents the effect
of a single round trip in an optical resonator, due to
its repeatability, it can be written by,

#3 $isl

\ Ray path Xi+1
g § - Optical axs

FIG. 1. Ray matrix or ABCD matrix in an aligned op-
tical system.

Xn A, B, AX, Xn X,
¢n = Cn D, A¢n ¢n = Mt, ¢n
1 0 0 1 1 1

(4)

where Ay, Bn, Cr, Dy, AX, and Ag¢, are the entries
of Mt,, and A, D, ~ B, C, = 1. From Eq. (4), the dis-
placement and slope of an input ray can be calculated
as follows,

(1 —' Dn)AXn + BnA¢n

X, =

(2—-A,—Dp)
 CpAXy + (1= A)A¢n

III. RAY MATRIX FOR OPTICAL
COMPONENTS WITH MISALIGNMENT IN A
RING RESONATOR

Let us consider a ring resonator as shown in Fig. 2,
which consists of 4 mirrors M1, M2, M3, and M4. In
a typical ring laser gyroscope, two flats (M1, M4) and
two spherical mirrors (M2, M3) are used. The dis-
tance between two adjacent mirrors along the beam
path is L. The mirrors are attached to the monoblock
(in other words, one-body block) made of Zerodur™,
which has the lowest thermal expansion coefficient.
This monoblock has a shape of square with corner
edge cut-off of small prisms to allow mirror attach-
ment. The channels between the mirrors are bored
to have a space for beam propagation. The manufac-
turing tolerance of this monoblock is very important
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FIG. 2. Geometrical parameters of ring laser monoblock
and its configuration.
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FIG. 3. Schematic drawing for the ray optical path n
the Meridian plane.

for a stable laser operation. However, in reality, there
exist some manufacturing errors such as:

(1) Angular deviation from 45° in the Meridian
plane : o1, a9, a3, 04

(2) Angular deviation from 90° in the Sagittal plane
: /61,/62)/63)ﬂ4

(3) Mismatch of the cross points between channel
axes: Nl, Ng, N3, Ny

In handling an optical system with reflective opti-
cal components, it is important to keep the coordinate
consistent. Fig. 2 shows how its right-handed coordi-
nate system changes upon reflection from mirrors in a
clockwise direction, where the beam propagates along
the z-axis. The adjustments of the optical path are
done by the movement of spherical mirrors 2 and 3
along the horizontal direction of Ty, T3 and along the
vertical direction of Hs, Hs.

Fig. 3 shows the optical beam path due to the mis-
alignment. Let us calculate how the coordinate of the
beam incident to the i** mirror changes in the Merid-
ian plane. The propagation angle of beam ¢; is posi-
tive, if the beam propagates in the direction of increas-
ing transverse coordinate. For the flat mirrors with oy,
when the incidence angle is ¢; and the reflected angle
becomes

Givr = —¢i + 204 (6)
If the coordinates of the incident beam X; onto i**
mirror is negative and the coordinate of the reflected
ray X/ right after 5** mirror is positive, that is, X| =
—X;. Nj is positive, if the cross point of centerlines
of channels is outside the monoblock, and negative, if
it appears inside the monoblock. With positive N;,
the coordinate of reflected beam increases by a factor
of v/2. When the beam propagates between it* and
(i41)** mirror, its linear coordinates are transformed
as follows

Xiy1 = =X + dap1 L + V2N, (7
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FIG. 4. Schematic drawing of angle coordinates on a
spherical mirror.

For the spherical mirrors, the reflection angle depends
on the coordinate of the incident ray on the mirror sur-
face as shown in Fig. 4. Assume that the i**-spherical
mirror of radius R; is set at 45°. The reflected beam
¢ir1 from point O is —¢;. The reflection angle from
the location of X; relative to the point O can be writ-
ten as,

(8)

2v2X,
hiy1 = 20; = R :

If one takes into account of N; and T;, the angular
coordinate of reflected beam could be written as,

= —& 4 20 Z@ N T
¢i+1'— ¢'L+2a'z+ R; (Xl \/§+\/§) (9)

Using Egs. (9) and (6) can be rewritten in terms of
the positions of the incident beam

Xpp1 = (sz - 1) X, — ¢

2 2
20, — = Ny + =
+<a RiN+Ri

T) L+V2N; (10
Also, the positions and slopes in the Sagittal plane
must be considered, this plane is in the vertical direc-
tion of Y. At the propagation between mirrors ¢ and
i+ 1, if the angular coordinates of the ray change on
the channels, its linear coordinates are given as,

Y1 =Y, + i1l (11)

The propagation angle ¥; is positive, if the ray prop-
agates in the direction of increasing the vertical co-
ordinate. For flat mirrors with tilt 8; from 90°, the
reflection angle is
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TABLE 1. Ray matrices for optical components in a ring resonator (clockwise direction).

Meridian plane Sagittal plane

1 L0 1LO
Interval matrix 01¢0 010
001 001
[ -1 0 V2N; i 1 0 0 1
Reflection matrix  from Z_R\/E -1 204 — %Ni + EZ-Ti __g 1 28, + '\]é_ﬁHi
spherical mirror I 01 0 1 g ] L 0 o 1 & ]
. -1 0 V2N; 10 0
Reflection matrix from flat 0 -1 2o 01 26
mirror 0 0 1 00 1
Yir1 = P +20; (12) Using Egs. (13) and (11) can be rewritten in terms of
iti f the incident
For the spherical mirrors, the reflection angle depends the positions of the incident ray,
on the coordinate of the incident ray on the mirror /s /3
surface. Assume that the i**-spherical mirror of ra- 2 2
Yii1= ——L\Y; ; i + —H;
dius R; is set at 45°. The reflected beam ¢;;; from i 1 R; i+l | 26,4+ R, L
point O is —¢;. In a similar way, the reflection angle
from the location of Y; relative to the point O can be (14)
written as,
V2 V2 Egs. (9), (10), (13), and (14) can be rewritten in a
Yit1 =i — EY" +26: + ”R;Hi (13) matrix form as follows.
|
Xin) [1Lo][-L O V2N ;
dit1 =(010 %2 2 4 20; — ]%—Ni + -}%—Tz &
1 001 : : . 1
I L 0o o 1
Yii1 1 Lol 1_0 0 Y;
Pig1 p =1010 ~§ 1 26+ %Hi (2 (15)
(1
1 00 1) | oy 1 1

Looking into the sequential ray matrices in Eq. (15),
one can see that it consists of two consecutive ray ma-
trices. One corresponds to the matrix due to free space
propagation and the other for the reflection matrix of
the spherical mirror. The characteristic ray matrices
for optical elements in a ring resonator are summa-
rized in Table 1. The flat mirror is a special case of

R; =00

In aring resonator, the beam can travel to the oppo-
site direction within a closed path. Thus, the optical
path must be considered in the counter clockwise di-
rection in Fig. 2. In a similar way, but considering its
coordinate system, the sequential transfer matrices in
the Meridian and Sagittal plane, can be rewritten as
follows.

Xio1 1Lo0][ 1L 0 V2N, X;

$i-1 p =010 2# -1 2ai+1—]%7Ni+7%Ti bi

1 001 § o d 1

Yi (1ol 1_0 0 Y,

Vi1 $=]010 —7@ 1 2ﬂi+1+-§Hi Vi (16)
1 oo01]| "y s 1
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TABLE 2. Ray matrices for the optical components in a ring resonator (counter-clockwise direction).

Meridian plane

Sagittal plane

1 LO 1 LO
Interval matrix 010 010
001 001
[ -1 0 V2N; 1 [ 1 0 0 |
Reflection  matrix  from 2R£ —1 20441 — %Ni + %Ti _g 1 2841+ .\}/T?Hi
spherical mirror ] 0‘ 0 | 0 o 1 |
_ -1 0 V2N 10 0
Reflection matrix from flat 0 -1 20441 01 20841
mirror 0 0 1 00 1
The sequential transfer matrices in Eq. (16) can be di- mw’ _ B (20)
vided into the same characteristic transfer matrices as A [ 1 ( A D)z] 1/2
aforementioned. The characteristic matrices are given 2

in Table 2.

Using the condition of Egs. (3) and (4), the dis-
placement and orientation on each mirror can be cal-
culated. The overall augmented matrices for the ring
resonator at each optical component is given by the se-
quential multiplication of each ray matrix from Tables
1 and 2, as in Egs. (17) and (18).

For the clockwise direction,

Mty = My MoMyMoMzMoMe My
Mty = MoyMoMy Mo MyMoMs M,

Mty = MzMyoMyMyM; MoMsMy (17)
Mty = MyMoMsMoMoMoMi My
For the counter-clockwise direction,
Mty = My MMy MyMsMyMyM,
Mty = Mo MoMsMyMsMoMi My (18)

Mty = Mz MoMyMyM MoMsMy
Mty = MyMoMy Mo Mo My M3z My

where Mp describes the interval matrix for the free
space propagation and M; describes the reflection ma-
trix from the mirror (where i = 1,2, 3,4). Using Eq.
(5) and the aforesaid overall augmented matrices, the
displacements and orientations on each mirror, right
after the mirror or just before the free propagation,
can be described.

For TEMgye mode operation, a diaphragm filtering
the various higher order modes is usually implemented
in one channel as shown in Fig. 2. Typically it is lo-
cated between two spherical mirrors or between two
flat mirrors. If we assume that it locates between two
spherical mirrors, the displacement and orientation at
the diaphragm can be calculated from Egs. (3) and

(4).
Mtgiaphragm = MgMaoMoMy MoM4MoM3Ms
where My is the interval matrix with L/2.

And the spot size at the center of diaphragm [3] can
be given by Eq. (20)

(19)

where w is the beam spot size in the Meridian or Sagit-
tal plane and A, B, D are the entries in Eq. (19). Due
to the astigmatism, the entries of the total matrix are
different in both planes and obviously the beam spot
has a elliptic shape .

IV. SIMULATION

Using the ray transfer matrix in Tables 1 and 2, the
ray trajectories are calculated for the monoblock with
the geometrical parameters listed in Table 3 and its
results are shown in Fig. 5. In this figure, the discon-
tinuity from channel to channel comes from a coordi-
nate system change upon reflection from the mirror.
Actually there is no discontinuation. Note that the
slopes on each channel and the effect of the sign of o
are shown in the figure. One can also see two different
paths for counter-propagating rays due to misalign-
ment. From Fig. 5, the deviation at the center of
the diaphragm (path length 60 mm from M1) in the
Meridian plane is 0.035 mm in the clockwise direction
and 0.04 mm in the counterclockwise direction. The
spot size is 0.22 mm. And the deviations from the
diaphragm center in the Sagittal plane are approxi-
mately 0.128 mm in two directions. The spot size is
0.26 mm. Fig. 6 shows the results after two spher-
ical mirrors were adjusted to pass the center of the
diaphragm. Note that CW beam cross the center at
z =60 mm as a result of alignments and the CCW
beam is slightly off-centered. Maple V Release 5.1
was used for all the simulations

In order for the ray to pass through the center of di-
aphragm, the movement of spherical mirrors M2 and
M3 with the same radius of curvature can generally
be presented such as Eq. (21), using the ray transfer
matrix Eq. (19).
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TABLE 3. Manufacturing tolerance of monoblock.

No. Parameter Symbol Parameter value
1 Channel length (mm) L 40
2 Radius of spherical mirror (mm) R(R2, R3) 2000

[0 3} -30
3 Angular deviation from 45° az 30
in the Meridian plane (arc sec) a3 30
(6 7] -30
B 5
4 Angular deviation from 90° B2 5
in the Sagittal plane (arc sec) Bs 5
Ba 5
Ny -0.05
5 Mismatch of the cross points Ny 0.05
between channel axes (mm) N3 0.05
Ny -0.05

T2=T3—N2—N3+R(a1—a2+a3~a4)
H2=—H3— V2R(B1 + B2 + Bs + ba)

The above relationship of the movement parameters
can be varied in the alignment procedures. According
to the actual mirror alignments presented and sim-
ulated, a flat mirror is put on M3 and calculates the
value of T2 and H2 such that the ray passes the cen-
ter of diaphragm. Then put, a spherical mirror on M3
back and calculate the proper location of T3 and H3

(21)
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FIG. 5. Ray path in a 16cm ring resonator with errors
in Table 3. Here T2.H2, T3. and H3 are zero.

in a similar way. The used relationships of the move-
ment parameters are formulated as follows.

V. CONCLUSION

We showed that the 3 x 3 formulation of ray trans-
fer matrix in the optical resonator is a very powerful
tool in dealing with the effects of misalignment of
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FIG. 6. Ray path in a 16cm ring resonator after mirror
alignments.
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optical components. Once monoblocks are manufac-
tured, this tool can be used to predict a ray tra-
jectory before or after the proper alignment as well
as alignment sensitivity. Moreover, one could spec-
ify the manufacturing tolerance for the monoblock
as required. Using this tool, we showed that the
two counter-propagating beams do not take the same
path, when the monoblock has manufacturing errors.
Through the simulations, the effect of numerical ad-
justment movement can conceptually be verified. And
the relationships of adjustment factors, Eq. (21), can
present the guideline of movement in the actual ad-
justment situations. This 3 x 3 matrix formalism can
be easily applied in a ring resonator with 3 mirrors.
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