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STRONGLY NIL CLEAN MATRICES OVER R[x]/
(
x2 − 1

)
Huanyin Chen

Abstract. An element of a ring is called strongly nil clean provided that
it can be written as the sum of an idempotent and a nilpotent element

that commute. We characterize, in this article, the strongly nil cleanness
of 2× 2 and 3× 3 matrices over R[x]/

(
x2 − 1

)
where R is a commutative

local ring with characteristic 2. Matrix decompositions over fields are

derived as special cases.

1. Introduction

Let R be an associative ring with identity. An element a ∈ R is said to be
strongly clean provided that there exist an idempotent e ∈ R and a unit u ∈ R
such that a = e + u and eu = ue. Strongly clean matrices over commutative
local rings were extensively studied by many authors from very different view
points (cf. [1-2], [4-7] and [9-12]). In [5], Diesl introduced the concept of
strongly nil cleanness. An element a ∈ R is strongly nil clean provided that
there exist an idempotent e ∈ R and a nilpotent element u ∈ R such that
a = e+ u and eu = ue. Every strongly nil clean element is strongly clean (cf.
[5, Proposition 3.1.3]). But the converse is not true, e.g., 2 ∈ Z. The other
motivation of studying strongly nil cleanness is derived from Lie algebra. Let
A ∈ Mn(F ) where F is a field. Then A = E + W,E is similar to a diagonal
matrix, W is nilpotent, E and W commute. Such decomposition is called the
Jordan-Chevalley decomposition in Lie theory (cf. [8]).

Many elementary properties of strongly nil cleanness were studied by Diesl
in [5]. Diesl studied the strongly nil cleanness for triangular matrices over local
rings (cf. [5, Theorem 3.2.5]). Here, a ring R is local provided that it has only
one maximal left ideal. As is well known, a ring R is local if and only if for
any x ∈ R, either x or 1 − x is invertible. So far, one can not know how the
strongly nil cleanness of full matrices behave even for a commutative local ring.
Also we note that one studied full strongly clean matrices only for the strongly
clean matrix rings (cf. [7, Theorem 3.3 and Theorem 3.4]). We will consider
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the strongly nil cleanness for a single matrix even the matrix rings not having
such properties.

In this note, we completely determine the strongly nil cleanness of 2×2 and
3 × 3 matrices over R[x]/

(
x2 − 1

)
where R is a commutative local ring with

characteristic 2. Matrix decompositions over fields are derived as special cases.
We use N(R) to denote the set of all nilpotent elements in the ring R. tr(A)

and det(A) mean the trace and the determinant of the matrix A, respectively.
We always use χ(A) to stand for the characteristic polynomial det(tIn −A) of
the matrix A ∈ Mn(R).

2. 2 × 2 matrices

We begin with an elementary result which makes our discussion from

R[x]/
(
x2 − 1

)
to a kind of group rings.

Lemma 2.1. Let R be a commutative ring, and let G = {1, g} be a group.
Then R[x]/(x2 − 1) ∼= RG.

Proof. Let G = {1, g} be a group. Construct a map φ : RG → R[x]/(x2 − 1)
given by φ(a + bg) = a+ bx for any a + bg ∈ RG. It is easy to verify that φ
is a ring surjective morphism. If φ(a+ bg) = 0, then a+ bx ∈ (x2 − 1). Write
a+ bx = (a0 + a1x+ · · ·+ anx

n)(x2 − 1) for some a0, a1, . . . , an ∈ R. Then we
get

−a0 = a,−a1 = b;
a0 − a2 = a1 − a3 = · · · = an−2 − an = 0;

an−1 = an = 0.

Thus, we see that a+ bg = 0, i.e., φ is injective. Therefore we have an isomor-
phism φ : RG → R[x]/(x2 − 1), as asserted. □
Lemma 2.2. Let R be a commutative local ring. Then A ∈ M2(R) is strongly
nil clean if and only if

(1) A ∈ M2(R) is nilpotent, or
(2) I2 −A ∈ M2(R) is nilpotent, or
(3) χ(A) has a root in N(R) and a root in 1 +N(R).

Proof. It is proved as in [3, Theorem 16.4.31]. □
Lemma 2.3. Let R be a commutative local ring with charR = 2, and let
G = {1, g} be a group. Then

(1) RG is a local ring.
(2) a+ bg ∈ N(RG) if and only if a+ b ∈ N(R).

Proof. (1) In view of [7, Lemma 2.3], RG is local.
(2) If a+ bg ∈ N(RG), then a+ b ∈ N(R). Thus, there exists some m ∈ N

such that (a+b)m = 0. As charR = 2, we easily check that (a+bg)2 = a2+b2 =
(a+ b)2. Therefore (a+ bg)2m = (a+ b)2m = 0, as required. □
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Lemma 2.4. Let R be a commutative ring. Then Mn

(
N(R)

)
⊆ N

(
Mn(R)

)
.

Proof. Given any A = (aij) ∈ Mn

(
N(R)

)
, then each aij ∈ N(R). As R is a

commutative ring, we can find some m11 ∈ N such that
(
Ra11R

)m11
= 0. For

any (stij), (r
t
ij) ∈ Mn(R)(1 ≤ t ≤ p), we have

p∑
t=1

(stij)


a11 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 (rtij) ∈ Mn

(
Ra11R

)
,

and so

( p∑
t=1

(stij)


a11 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 (rtij)
)m11

= 0.

This implies that

(
Mn(R)


a11 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

Mn(R)
)m11

= 0.

Likewise,

(
Mn(R)


0 · · · 0
a21 · · · 0
...

. . .
...

0 · · · 0

Mn(R)
)m21

, . . . ,

(
Mn(R)


0 · · · 0
0 · · · 0
...

. . .
...

0 · · · ann

Mn(R)
)mnn

= 0.

Therefore we have

A =


a11 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

+ · · ·+


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · ann

 ∈ N
(
Mn(R)

)
.

Consequently, Mn

(
N(R)

)
⊆ N

(
Mn(R)

)
, as desired. □

Let A(x) =
(
aij(x)

)
∈ Mn

(
R[x]/(x2 − 1)

)
where deg

(
aij(x)

)
≤ 1, and let

r ∈ R. We use A(r) to stand for the matrix
(
aij(r)

)
∈ Mn(R).
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Theorem 2.5. Let R be a commutative local ring with charR = 2, and let
A(x) ∈ M2

(
R[x]/(x2 − 1)

)
. Then the following are equivalent:

(1) A(x) ∈ M2

(
R[x]/(x2 − 1)

)
is strongly nil clean.

(2) A(1) ∈ M2(R) is strongly nil clean.

Proof. (1) ⇒ (2) Let G = {1, g} be a group. In view of Lemma 2.1, A(g) ∈
M2(RG) is strongly nil clean. Thus, there exist an idempotent E(g) ∈ M2(RG)
and a matrix W (g) ∈ N

(
M2(RG)

)
such that A(g) = E(g) + W (g) with

E(g)W (g) = W (g)E(g). Hence A(1) = E(1) + W (1) with E(1)W (1) =
W (1)E(1). As E(g)2 = E(g), we get E(1)2 = E(1). SinceW (g)∈ N

(
M2(RG)

)
,

it follows from Lemma 2.3 that W (1) ∈ N
(
M2(R)

)
. Consequently, A(1) ∈

M2(R) is strongly nil clean.
(2) ⇒ (1) Since A(1) ∈ M2(R) is strongly nil clean, it follows from Lemma

2.2 that A(1) ∈ M2(R) is nilpotent, or I2 − A(1) ∈ M2(R) is nilpotent, or the
quadratic equation t2−trA(1) ·t+detA(1) = 0 has a root α ∈ N(R) and a root
β ∈ 1 + N(R). If A(1) ∈ M2(R) is nilpotent, it follows from [6, Proposition
3.5.4] that χA(1) ≡ t2 (mod N(R)); hence, trA(1), detA(1) ∈ N(R). Ac-
cording to Lemma 2.3, trA(g), detA(g) ∈ N(RG). Obviously, A(g)2 − trA(g) ·
A(g) + detA(g) = 0; hence, A(g)2 ∈ M2

(
N(RG)

)
. It follows from Lemma

2.4 that A(g)2 ∈ N
(
M2(RG)

)
. Therefore A(g) ∈ M2(RG) is nilpotent. If

I2 − A(1) ∈ M2(R) is nilpotent, similarly, we get I2 − A(g) ∈ N
(
M2(RG)

)
.

Now we assume that the quadratic equation t2 − trA(1) · t+ detA(1) = 0 has
a root α ∈ N(R) and a root β ∈ 1 + N(R). In view of Lemma 2.3, RG is
a commutative local ring. From Lemma 2.2, it will suffice to show that the
quadratic equation t2 − trA(g) · t + detA(g) = 0 has a root α(g) ∈ N(RG)
and a root β(g) ∈ 1 +N(RG). Obviously, α2 − trA(1) · α + detA(1) = 0 and
β2 − trA(1) · β + detA(1) = 0. This implies that (α− β)(α+ β − trA(1)) = 0.
As α − β ∈ U(R), we deduce that trA(1) = α + β ∈ 1 + N(R). Further,
detA(1) = αβ ∈ N(R). It follows from Lemma 2.3 that trA(g) ∈ 1 +N(RG)
and detA(g) ∈ N(RG).

Write α(g) = x + (j0 − x)g, trA(g) = 1 + a + (j1 − a)g and detA(g) =
b+ (j2 − b)g, where j0, j1, j2 ∈ N(R). It follows that(

x+ (j0 − x)g
)2 − (

x+ (j0 − x)g
)(
1 + a+ (j1 − a)g

)
+ b+ (j2 − b)g = 0.

Hence,
x2 + (j0 − x)2 − x(1 + a)− (j0 − x)(j1 − a) + b = 0;

−x(j1 − a)− (j0 − x)(1 + a) + j2 − b = 0.

Thus,
j20 − x+ xj1 − j0j1 + j0a+ b = 0;
x− xj1 − j0 − j0a+ j2 − b = 0.

As a result, we get

j20 − j0(1 + j1) + j2 = 0;
−x(1− j1) = j2 − b− j0 − j0a.
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Obviously,

j0 = α(1),
j1 = trA(1)− 1,
j2 = detA(1),
a = trA(0)− 1,
b = detA(0).

Therefore xtrA(1) = detA(1) − detA(0) − α − α
(
trA(0) − 1

)
. Choose x =(

trA(1)
)−1(

detA(1) − detA(0) − α − α(trA(0) − 1)
)
and j0 = α. Then the

quadratic equation t2−trA(g)·t+detA(g) = 0 has a root x+(j0−x)g ∈ N(RG).
Write β(g) = x + (j0 − x)g, trA(g) = 1 + a + (j1 − a)g and detA(g) =

b+(j2−b)g, where j0 ∈ 1+N(R), j1, j2 ∈ N(R). As in the preceding discussion,
we get j20 − j0(1 + j1) + j2 = 0;−x(1− j1) = j2 − b− j0 − j0a. Analogously,

j0 = β(1),
j1 = trA(1)− 1,
j2 = detA(1),
a = trA(0)− 1,
b = detA(0).

Therefore xtrA(1) = detA(1) − detA(0) − β − β
(
trA(0) − 1

)
. Choose x =(

trA(1)
)−1(

detA(1) − detA(0) − β − β(trA(0) − 1)
)
and j0 = β. Then the

quadratic equation t2 − trA(g) · t + detA(g) = 0 has a root x + (j0 − x)g ∈
1+N(RG). According to Lemma 2.2, A(g) ∈ M2(RG) is strongly nil clean, as
asserted. □

Example 2.6. Let S = {0, 1, a, b} be a set. Define operations by the following
tables:

+ 0 1 a b
0
1
a
b

0 1 a b
1 0 b a
a b 0 1
b a 1 0

× 0 1 a b
0
1
a
b

0 0 0 0
0 1 a b
0 a b 1
0 b 1 a

Then S is a finite field with |S| = 4. Let

R = {s1 + s2z | s1, s2 ∈ S, z is an indeterminant satisfying z2 = 0}.

Then J(R) = zR and R/J(R) ∼= S. Thus, J(R) is nil. Moreover, R is a
commutative local ring with charR = 2. Then

A(x) =

(
1 1 + x

1 + x 1 + x

)
∈ M2

(
R[x]/(x2 − 1)

)
is strongly nil clean. Since the characteristic polynomial χA(1) = t2 − t =
t(t − 1) has a root 0 ∈ N(R) and a root 1 ∈ 1 +N(R). According to Lemma
2.2, the matrix A(1) = ( 1 0

0 0 ) ∈ M2(R) is strongly nil clean. In view of Theorem
2.5, A(x) ∈ M2

(
R[x]/(x2 − 1)

)
is strongly nil clean.
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3. 3 × 3 matrices

Let f(t) ∈ R[t]. We say that f(t) is a monic polynomial of degree n if
f(t) = tn + an−1t

n−1 + · · · + a1t + a0 where an−1, . . . , a1, a0 ∈ R. For any
r ∈ R, as in [6, Definition 3.1.2], define

Pr = {f ∈ R[t] | f monic, and f − (t− r)deg(f) ∈ N(R)[t]}.

Let A ∈ M3(R). Set mid(A) = det(I3 − A) − 1 + tr(A) + det(A). We now
extend Lemma 2.2 to a single 3× 3 matrix.

Lemma 3.1. Let R be a commutative local ring. Then A ∈ M3(R) is strongly
nil clean if and only if

(1) I3 −A ∈ M3(R) is nilpotent, or
(2) χ(A) has a root in N(R), det(I3 − A) ∈ N(R) and tr(A) ∈ 2 +N(R),

or
(3) χ(A) has a root in 1 + N(R), det(A) ∈ N(R) and tr(A) ∈ 1 + N(R),

or
(4) A ∈ M3(R) is nilpotent.

Proof. Suppose that A ∈ M3(R) is strongly nil clean. Analogously to [6, Propo-
sition 3.5.8], there exist an h0 ∈ P0 and an h1 ∈ P1 such that χ(A) = h0h1.

Case I. deg(h0) = 0 and deg(h1) = 3. Then h0 = 1 and h1 = t3 − tr(A)t2 +
mid(A)t − det(A). As h1 ∈ P1, we see that h1 ≡ (t − 1)3

(
mod N(R)

)
. This

implies that 3− tr(A),mid(A)− 3, 1− det(A) ∈ N(R). Therefore det(A) ∈ 1+
N(R), det(I3−A) ∈ N(R) and tr(A) ∈ 3+N(R). Thus, tr(I3−A) = 3−tr(A) ∈
N(R). Further, mid(I3 −A) = det(A)− 1 + tr(I3 −A) + det(I3 −A) ∈ N(R).
According to [6, Proposition 3.5.4], I3 −A ∈ M3(R) is nilpotent.

Case II. deg(h0) = 1 and deg(h1) = 2. Then h0 = t−α and h1 = t2+ bt+ c.
Hence α, b+ 2, c− 1 ∈ N(R). It is easy to verify that α − b = tr(A), c− bα =
mid(A) and cα = det(A). Therefore det(I3−A) ∈ N(R) and tr(A) ∈ 2+N(R).

Case III. deg(h0) = 2 and deg(h1) = 1. Then h0 = t2+bt+c and h1 = t−α.
Hence α ∈ 1 + N(R), b, c ∈ N(R). Therefore det(A) ∈ N(R), det(I3 − A) ∈
N(R) and tr(A) ∈ 1 +N(R).

Case IV. deg(h0) = 3 and deg(h1) = 0. Then h0 = t3 − tr(A)t2 +mid(A)t−
det(A) and h1 = 1. Therefore det(A) ∈ N(R), det(I3 − A) ∈ 1 + N(R) and
tr(A) ∈ N(R). Further, mid(A) = det(I3 − A) − 1 + tr(A) + det(A) ∈ N(R).
According to [6, Proposition 3.5.4], A ∈ M3(R) is nilpotent.

We now show the converse. If (1) holds, then I3 − A is strongly nil clean,
and then so is A. If (2) holds, then χ(A) has a root α ∈ N(R). Hence,
α3 − trA · α2 + midA · α − detA = 0, and so, χ(A) = χ(A) −

(
α3 − trA ·

α2 +midA · α − detA
)
= (t − α)(t2 + at + b) where α ∈ N(R). Furthermore,

α − a = tr(A), b − aα = mid(A) and bα = det(A). This implies that a ∈
−2 +N(R), b ∈ 1 +N(R). Set h0 = t− α and h1 = t2 + at+ b. Then h0 ∈ P0

and h1 ∈ P1. Similarly to [6, Proposition 3.5.8], A ∈ M3(R) is strongly nil
clean. If (3) holds, then χ(A) = (t2 + at + b)(t − α) where α ∈ 1 + N(R).
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Then α − a = tr(A) and bα = det(A). This implies that a, b ∈ N(R). Set
h0 = t2 + at + b and h1 = t − α. Then h0 ∈ P0 and h1 ∈ P1. Similarly
to [6, Proposition 3.5.8], A ∈ M3(R) is strongly nil clean. If (4) holds, then
A ∈ M3(R) is strongly nil clean, as asserted. □

Theorem 3.2. Let R be a commutative local ring with charR = 2, and let
A(x) ∈ M3

(
R[x]/(x2 − 1)

)
. Then the following are equivalent:

(1) A(x) ∈ M3

(
R[x]/(x2 − 1)

)
is strongly nil clean.

(2) A(1) ∈ M3(R) is strongly nil clean.

Proof. (1) ⇒ (2) Let G = {1, g} be a group. In view of Lemma 2.1, A(g) ∈
M3(RG) is strongly nil clean. Thus, there exist an idempotent E(g) ∈ M3(RG)
and a matrix W (g) ∈ N

(
M3(RG)

)
such that A(g) = E(g) + W (g) with

E(g)W (g) = W (g)E(g). As in the proof of Theorem 2.5, we show that
A(1) ∈ M3(R) is strongly nil clean.

(2) ⇒ (1) Since A(1) ∈ M3(R) is strongly nil clean, it follows from Lemma
3.1 that

(i) A(1) ∈ M3(R) is nilpotent, or
(ii) I3 −A(1) ∈ M3(R) is nilpotent.
(iii) χA(1) has a root in 1+N(R), detA(1) ∈ N(R) and trA(1) ∈ 1+N(R),

or
(iv) χA(1) has a root in N(R), det

(
I3 − A(1)

)
∈ N(R) and trA(1) ∈ 2 +

N(R).

If (i) holds, then A(1) ∈ M2(R) is nilpotent. By virtue of [6, Proposition
3.5.4], we see that χA(1) ≡ t3 (mod N(R)); hence,

trA(1),midA(1), detA(1) ∈ N(R).

In view of Lemma 2.3, we get tr
(
A(g)

)
,mid

(
A(g)

)
,det

(
A(g)

)
∈ N(RG). By

Cayley-Hamilton Theorem, we see that A(g)3 − tr
(
A(g)

)
·A(g)2 +mid

(
A(g)

)
·

A(g) − det
(
A(g)

)
= 0. Thus, we have that A(g)3 ∈ M3

(
N(R)

)
. In light of

Lemma 2.4, A(g)3 ∈ N
(
M3(R)

)
. Hence, we can find some m ∈ N such that

A(g)3m = 0. Therefore A(g) ∈ M3(RG) is nilpotent, and thus it is strongly nil
clean.

If (ii) holds, then I3 −A(1) ∈ M3(R) is nilpotent. As in the proof in (1), we
see that I3 −A(g) is nilpotent, and so A(g) ∈ M3(RG) is strongly nil clean.

If (iii) holds, then χA(1) has a root α ∈ 1 + N(R),detA(1) ∈ N(R) and
trA(1) ∈ 1 +N(R). Hence,

α3 − trA(1) · α2 +midA(1) · α− detA(1) = 0.

We infer that midA(1) ∈ N(R).
Write α(g) = x+(j0−x)g, trA(g) = 1+a+(j1−a)g, midA(g) = b+(j2−b)g

and detA(g) = c + (j3 − c)g, where j0 ∈ 1 + N(R), j1, j2, j3 ∈ N(R). Then(
x+ (j0 − x)g

)3 − (
1+ a+ (j1 − a)g

)(
x+ (j0 − x)g

)2
+
(
b+ (j2 − b)g

)(
1+ a+
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(j1 − a)g
)
−

(
c+ (j2 − c)g

)
= 0. Hence,

j30 − j20x− j20j1 + j20a+ j0b+ j2x− j2 + c = 0;
j20x− j20 − j20a+ j0j2 − j0b− j2x− c = 0.

As a result, we get

j30 − j20(1 + j1) + j0j2 − j3 = 0;
(j20 − j2)x = j30 − j20j1 + j20a+ j0b− j2 + c;

Obviously,
j0 = α(1),
j1 = trA(1)− 1,
j2 = midA(1),
j3 = detA(1),
a = trA(0)− 1,
b = midA(0),
c = detA(0).

Choose j0 = α. Then j20 −j2 ∈ 1+N(R) ⊆ U(R). Choose x = (j20 −j2)
−1

(
j30 −

j20j1 + j20a + j0b − j2 + c
)
. Then the characteristic polynomial χ

(
A(g)

)
has a

root x+ (j0 − x)g ∈ 1 +N(RG). As detA(1) ∈ N(R) and trA(1) ∈ 1 +N(R),
it follows from Lemma 2.3 that det

(
A(g)

)
∈ N(R) and tr

(
A(g)

)
∈ 1 +N(R).

According to Lemma 3.1, A(g) ∈ M3(RG) is strongly nil clean.
If (iv) holds, then χA(1) has a root β ∈ N(R), det

(
I3 − A(1)

)
∈ N(R) and

trA(1) ∈ 2 + N(R). Then χA(1) has a root in N(R),det(I3 − A)(1) ∈ N(R)
and tr(I3 − A)(1) = 3 − trA(1) ∈ 1 + N(R). Clearly, det

(
βI3 − A(1)

)
= 0,

and then det
(
(1− β)I3 − (I3 −A)(1)

)
= 0. This implies that χ(I3 −A)(1) has

a root 1 − β ∈ 1 + N(R). As in the proof of the preceding (3), we see that
I3 − A(g) ∈ M3(RG) is strongly nil clean, and then so is A(g). Therefore the
proof is true. □

We note that all strongly nil clean 3×3 matrices overR[x]/(x2−1) completely
determined when R is a finite filed with characteristic 2 as the following shows.

Example 3.3. Let R = Z2 = {0, 1}. Then R is a finite field; hence, a commu-
tative local ring. In addition, charR = 2. Then

A(x) =

 x x 1 + x
1 + x 1 0
1 1 + x x

 ∈ M3

(
R[x]/(x2 − 1)

)
is strongly nil clean. Obviously, the matrix A(1) =

(
1 1 0
0 1 0
1 0 1

)
∈ M3(R) has a

strongly nil clean decomposition A(1) = I3 +
(

0 1 0
0 0 0
1 0 0

)
. According to Theorem

3.2, A(x) ∈ M3

(
R[x]/(x2 − 1)

)
is strongly nil clean.

We can not extend Theorem 3.2 to 4×4 matrices over a general commutative
local ring with characteristic 2. We now record a special case as follows.
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Theorem 3.4. Let R be a commutative local ring with charR = 2, and let
A(x) ∈ M4

(
R[x]/(x2 − 1)

)
. If χA(1) = (t − α)(t − β)(t − γ)(t − δ) where at

least three of α, β, γ, δ in N(R), then A(x) ∈ M4

(
R[x]/(x2 − 1)

)
is strongly nil

clean.

Proof. Case 1. α ∈ N(R), β ∈ N(R), γ ∈ N(R), δ ∈ N(R). Write χA(g) =
t4 + a(g)t3 + b(g)t2 + c(g)t + d(g). Obviously, a(1) = −(α + β + γ + δ) ∈
N(R), it follows from Lemma 2.3 that a(g) ∈ N(RG). Likewise, we see that
b(g), c(g), d(g) ∈ N(RG). Therefore χA(g) = h0h1, where h0 = χA(g) and
h1 = 1 ∈ P1. As h0 ≡ t4 (mod N(R)), we see that h0 ∈ P0. Similarly to [6,
Proposition 3.5.8], we conclude that A(g) ∈ M4(RG) is strongly nil clean.

Case 2. α ∈ N(R), β ∈ N(R), γ ∈ N(R), δ ∈ 1 + N(R). Write α(g) =
x+(j0−x)g, a(g) = a+(j1−a)g, b(g) = b+(j2−b)g, c(g) = c+(j3−c)g, d(g) =
d + (j4 − d)g where j0 ∈ 1 + N(R), j1 ∈ 1 + N(R), j2, j3, j4 ∈ N(R). Then(
x+ (j0 − x)g

)4
+

(
a+ (j1 − a)g

)(
x+ (j0 − x)g

)3
+

(
b+ (j2 − b)g

)(
x+ (j0 −

x)g
)2

+
(
c+ (j3 − c)g

)(
x+ (j0 − x)g

)
+
(
d+ (j4 − d)g

)
= 0. Hence,

j40 + aj20x+ (j1 − a)j20(j0 − x) + bj20 + cx+ (j3 − c)(j0 − x) + d = 0;
aj20(j0 − x) + (j1 − a)j20x+ (j2 − b)j20 + (j3 − c)x+ c(j0 − x) + j4 − d = 0.

As a result, we get

j40 + j1j
3
0 + j2j

2
0 + j3j0 + j4 = 0;

(j1j
2
0 + j3)x = −aj30 + bj20 − j2j

2
0 − cj0 − j4 + d;

Choose j0 = δ and x = (j1j
2
0 + j3)

−1(−aj30 + bj20 − j2j
2
0 − cj0 − j4 + d). Then

χA(g) has a root x + (j0 − x)g ∈ 1 +N(RG). Write χA(g) =
(
t − (x + (j0 −

x)g)
)(
t3 + p(g)t2 + q(g)t+ r(g)

)
. Then

a(g) = p(g)−
(
x+ (j0 − x)g

)
, b(g) = q(g)− p(g)

(
x+ (j0 − x)g

)
,

c(g) = r(g)− q(g)
(
x+ (j0 − x)g

)
and d(g) = −r(g)

(
x+ (j0 − x)g

)
.

It is easy to verify that p(1) = a(1) +
(
x + (j0 − x)

)
= a(1) + j0 = j1 +

j0 ∈ N(R). Likewise, we see that q(1), r(1) ∈ N(R). In view of Lemma
2.3, p(g), q(g), r(g) ∈ N(RG). Therefore t3 + p(g)t2 + q(g)t + r(g) ∈ P0 and
t − (x + (j0 − x)g) ∈ P1. Analogously to [6, Proposition 3.5.8], we show that
A(g) ∈ M4(RG) is strongly nil clean. Other cases can be shown in the same
manner, and therefore the proof is true. □

Corollary 3.5. Let R be a commutative local ring with charR = 2, and let
A(x) ∈ M4

(
R[x]/(x2 − 1)

)
. If χA(1) = (t − α)(t − β)(t − γ)(t − δ) where at

least three of α, β, γ, δ in 1+N(R), then A(x) ∈ M4

(
R[x]/(x2 − 1)

)
is strongly

nil clean.

Proof. Suppose that at least three of α, β, γ, δ in 1 + N(R). Set B = I4 − A.
Since det(tI4−A) = (t−α)(t−β)(t−γ)(t−δ). Let x = 1−t. Then det((1−x)I4−
A) = det

(
xI4− (I4−A)

)
=

(
x− (1−α)

)(
x− (1−β)

)(
x− (1−γ)

)(
x− (1−δ)

)
.

Hence, χ
(
I4 −A

)
=

(
t− (1− α)

)(
t− (1− β)

)(
t− (1− γ)

)(
t− (1− δ)

)
where
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at leat three of 1 − α, 1 − β, 1 − γ, 1 − δ in N(R). According to Theorem 3.4,
we complete the proof. □

Example 3.6. Let R =
{(

a 0 b
0 a c
0 0 a

)
| a, b, c ∈ Z2

}
. Then R is a commutative

local ring with characteristic 2. Choose

r =

 1 0 1
0 1 1
0 0 1

 , p =

 1 0 1
0 1 0
0 0 1

 , q =

 0 0 1
0 0 1
0 0 0

 ∈ R.

Then

A(x) =


r x q + x 1
0 r r − x p+ qx
0 0 p 1
0 0 0 q

 ∈ M4

(
R[x]/(x2 − 1)

)
is strongly nil clean. Clearly, the characteristic polynomial χA(1) = (t−r)2(t−
p)(t − q) where r, p ∈ 1 + N(R) and q ∈ N(R). In light of Corollary 3.5,
A(x) ∈ M4

(
R[x]/(x2 − 1)

)
is strongly nil clean, as asserted.

As the computation is too hard, it is worth noting that one can not know if
there is an analogue of Theorem 3.4 even for matrices with higher ranks over
a finite field.

Acknowledgements. The author is grateful to the referee for his/her sug-
gestions which correct several errors in the first version and made the new one
clearer.

References

[1] G. Borooah, A. J. Diesl, and T. J. Dorsey, Strongly clean matrix rings over commutative
local rings, J. Pure Appl. Algebra 212 (2008), no. 1, 281–296.

[2] H. Chen, On strongly J-clean rings, Comm. Algebra 38 (2010), no. 10, 3790–3804.
[3] , Rings Related Stable Range Conditions, Series in Algebra 11, Hackensack, NJ:

World Scientific, 2011.
[4] , On uniquely clean rings, Comm. Algebra 39 (2011), no. 1, 189–198.

[5] A. J. Diesl, Classes of Strongly Clean Rings, Ph.D. Thesis, University of California,
Berkeley, 2006.

[6] T. J. Dorsey, Cleanness and Strong Cleanness of Rings of Matrices, Ph.D. Thesis, Uni-
versity of California, Berkeley, 2006.

[7] L. Fan and X. Yang, A note on strongly clean matrix rings, Comm. Algebra 38 (2010),
no. 3, 799–806.

[8] J. E. Humphreys, Introduction to Lie Algebra and Representation Theory, Springer-

Verlag, Beijing, 2006.
[9] Y. Li, Strongly clean matrix rings over local rings, J. Algebra 312 (2007), no. 1, 397–404.

[10] W. K. Nicholson, Strongly clean rings and Fitting’s lemma, Comm. Algebra 27 (1999),
no. 8, 3583–3592.

[11] , Clean rings: a survey, Advances in Ring Theory, World Sci. Publ., Hackensack,
NJ, 2005, 181–198.

[12] X. Yang and Y. Zhou, Some families of strongly clean rings, Linear Algebra Appl. 425
(2007), no. 1, 119–129.



STRONGLY NIL CLEAN MATRICES 599

Department of Mathematics
Hangzhou Normal University
Hangzhou 310036, P. R. China
E-mail address: huanyinchen@yahoo.cn


