• Title/Summary/Keyword: Marine Fungus

Search Result 67, Processing Time 0.025 seconds

12,13-Dihydroxyfumitremorgin C, Fumitremorgin C, and Brevianamide F, Antibacterial Diketopiperazine Alkaloids from the Marine-Derived Fungus Pseudallescheria sp.

  • Zhang, Dahai;Noviendri, Dedi;Nursid, Muhammad;Yang, Xiu-Dong;Son, Byeng-Wha
    • Natural Product Sciences
    • /
    • v.13 no.3
    • /
    • pp.251-254
    • /
    • 2007
  • Dioxopiperazine alkaloids, 12R,13S-dihydroxyfumitremorgin C (1), fumitremorgin C (2), and brevianamide F (3), were isolated from the marine-derived fungus Pseudallescheria, and the absolute stereostructures of compounds 1 - 3 were elucidated on the basis of chemical and physicochemical evidence. Compounds 1 - 3 showed an antibacterial activity against Staphylococcus aureus, methicillin-resistant S. aureus, and multidrug-resistant S. aureus. The MIC (minimum inhibitory concentration) values of compounds 1 - 3 were 125 ${\mu}g/mL$ for all strains.

Graphiumins I and J, New Thiodiketopiperazines from the Marine-derived Fungus Graphium sp. OPMF00224

  • Fukuda, Takashi;Nagai, Kenichiro;Kurihara, Yuko;Kanamoto, Akihiko;Tomoda, Hiroshi
    • Natural Product Sciences
    • /
    • v.21 no.4
    • /
    • pp.255-260
    • /
    • 2015
  • Two new thiodiketopiperazines (TDKPs), designated graphiumins I (1) and J (2), were isolated from the culture broth of the marine-derived fungus Graphium sp. OPMF00224 by solvent extraction, silica gel column chromatography, and HPLC. Their absolute structures were elucidated by spectroscopic analyses (1D and 2D NMR data, ROESY correlations, and CD data) and chemical methods. They were found to be structurally rare TDKPs with a phenylalanine-derived indolin substructure. Compounds 1 and 2 inhibited yellow pigment production by methicillin-resistant Staphylococcus aureus (MRSA) with $IC_{50}$ values of 63.5 and $76.5{\mu}g/ml$, respectively, without inhibiting its growth, even at $250{\mu}g/ml$.

Indolyl Alkaloid Derivatives, $N_b-Acetyltryptamine$ and Oxaline from a Marine-Derived Fungus

  • Li, Yong;Li, Xi-Feng;Kim, Dong-Soo;Choi, Hong-Dae;Son, Byeng-Wha
    • Archives of Pharmacal Research
    • /
    • v.26 no.1
    • /
    • pp.21-23
    • /
    • 2003
  • Indolyl alkaloids, $N_b-acetyltryptamine$ (1) and the known oxaline (2) have been isolated from the organic extract of the broth of an unidentified fungus collected from the surface of the marine red alga Gracilaria verrucosa. The structure of $N_{b}$-acetyltryptamine (1) was assigned on the basis of comprehensive spectroscopic analyses.s.

Protulactones A and B: Two New Polyketides from the Marine-derived Fungus Aspergillus sp. SF-5044

  • Sohn, Jae-Hak;Oh, Hyun-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1695-1698
    • /
    • 2010
  • Protulactones A (1) and B (2), two new polyketide-derived fungal metabolites, have been isolated from an EtOAc extract of the marine-derived fungus Aspergillus sp. SF-5044 by various chromatographic methods. The structures of 1 and 2 were mainly determined by analysis of the NMR spectroscopic data and MS data, along with chemical methods such as Mosher method. Protulactones A (1) and B (2) are new members of polyketide-derived secondary metabolites, possessing unique ring systems among the fungal metabolites produced by the genus Aspergillus.

Radical Scavenging Hydroxyphenyl Ethanoic Acid Derivatives from a Marine-Derived Fungus

  • Li Xifeng;Kim Se-Kwon;Kang Jung-Sook;Choi Hong-Dae;Son Byeng-Wha
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.637-638
    • /
    • 2006
  • Bioassay-guided fractionation of an organic extract of the culture broth from an unidentified marine-derived fungus led to the isolation of a new metabolite, N-[2-(4-hydroxyphenyl) acetyl]formamide (1), along with four known polyketides, 4-hydroxyphenyl acetamide (2), 4-hydroxyphenyl acetic acid (3), 3,4-dihydroxyphenyl acetic acid (4), and N-[2-(4-hydroxyphenyl)ethenyl]formamide (5). The structures of 1-5 were elucidated by spectral data analyses. Among them, compounds 1, 4, and 5 exhibited significant radical scavenging activity against 1, 1-diphenyl-2-picrylhydrazyl (DPPH) with $IC_{50}$ values of 8.4, 11.9, and $0.2{\mu}M$, respectively.

Redoxcitrinin, a Biogenetic Precursor of Citrinin from Marine Isolate of Fungus Penicillium sp.

  • Zhang, Dahai;Li, Xianguo;Kang, Jung-Sook;Choi, Hong-Dae;Jung, Jee-H.;Son, Byeng-Wha
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.865-867
    • /
    • 2007
  • A chemical analysis of the fermentation of the marine-derived fungus Penicillium sp. led to the isolation of a biogenetic precursor of citrinin, redoxcitrinin(1), together with polyketide mycotoxins, phenol A(2), citrinin H2(3), 4-hydroxymellein(4), citrinin(5), and phenol A acid(6). The structures of compounds 1-6 were determined on the basis of physicochemical data analyses. Among them, compounds 1-3 exhibited a potent radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl(DPPH) with $IC_{50}$ values of 27.7, 23.4, and $27.2{\mu}M$, respectively.

Compounds from a jellyfish-derived fungus Aspergillus fumigates

  • Tao, Guan-yu;Liu, Juan;Jung, Jee H.;Guo, Wei;Wen, Xiao-qiong;Liu, Yonghong
    • Natural Product Sciences
    • /
    • v.22 no.2
    • /
    • pp.82-86
    • /
    • 2016
  • Six compounds were isolated from the secondary metabolites of the jellyfish-derived fungus Aspergillus fumigates, whose structures were identified by chemical methods and spectroscopic analysis as pseurotin F1 (1), azaspirofurans B (2), $(22E,\;24R)-24-methyl-5{\alpha}-cholesta-7,22-diene-3{\beta},5,6{\beta}-triol$ (3), $5{\alpha},8{\alpha}-epidioxyergosta-6,22-dien-3{\beta}-o1$ (4), $cyclo-({\small{L}}-Pro-{\small{L}}-Tyr)$ (5), fumitremorgin C (6). The compounds 1 - 5 were isolated from the fungus Aspergillus fumigates for the first time. The isolated compounds (1 - 6) were evaluated for antibiotic activity and cytotoxicity against six bacterial strains and ten human tumor cell lines, respectively.

Novel Antifungal Diketopiperazine from Marine Fungus Metabolites

  • Byun, Hee-Guk;Kim, Se-Kwon
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2002.10a
    • /
    • pp.175-176
    • /
    • 2002
  • Rice blast, caused by Pyricularia oryzae (P. oryzae), is generally considered to be the most serious fungal disease of rice by its widespread distribution and destructiveness (Manandhar et al., 1998). The pathogenic fungus directly penetrates into the rice plant from a cellular structure called an appressorium that is formed at the tip of the germ tube. And the fungus can attack any aerial part of the rice plant, including seeds, in which the fungus may overwinter for several years. (omitted)

  • PDF