• Title/Summary/Keyword: Magnetic resonance

Search Result 6,553, Processing Time 0.033 seconds

Magnetic-field Sensitivity of PMN-PZT/Ni Magnetoelectric Composite with Piezoelectric Single Crystal Mode Changes (PMN-PZT/Ni 자기-전기 복합체에서 단결정 압전 모드에 따른 자기장 감도 특성)

  • Park, Sojeong;Peddigari, Mahesh;Ryu, Jungho
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.45-50
    • /
    • 2020
  • Magnetoelectric (ME) composites were designed using the PMN-PZT single crystal and Ni foils; the properties and magnetic-field sensitivities of ME composites with different piezoelectric vibration modes (i.e., 31, 32, and 36 modes that depend on the crystal orientation of the single crystal) were compared. In the off-resonance condition, the ME coupling properties of the ME composites with the 32 and 36 piezoelectric vibration modes were better than those of the ME composites with the 31 piezoelectric vibration mode. However, in the resonance condition, the ME coupling properties of the ME composites were almost similar, irrespective of the piezoelectric vibration mode. Additionally, in the off-resonance condition (at 1 kHz), the magnetic-field sensitivity of the ME composites with the 36 piezoelectric vibration mode was up to 2 nT and those of the ME composites with the 31 and 32 piezoelectric vibration modes were up to 5 nT. These magnetic-field sensitivities are similar to those offered by conventional high-sensitivity magnetic-field sensors; the potential of the proposed sensor to replace costly and bulky high-sensitivity magnetic field sensors is significant.

Cetyl Trimethyl Ammonium Bromide-coated Nickel Ferrite Nanoparticles for Magnetic Hyperthermia and T2 Contrast Agents in Magnetic Resonance Imaging

  • Lee, Da-Aemm;Bae, Hongsubm;Rhee, Ilsum
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1334-1339
    • /
    • 2018
  • Spherical nickel ferrite nanoparticles were synthesized using the thermal decomposition method and coated with cetyl trimethyl ammonium bromide (CTAB) after the synthesis. Transmission electron microscopy images showed that the average diameter of the particles was 9.40 nm. The status of the CTAB-coating on the surface of the particles was checked using Fourier-transform infrared spectroscopy. Their hysteresis curve showed that the particles exhibited a superparamagnetic behavior. The $T_1$ and the $T_2$ relaxations of the nuclear spins were observed in aqueous solutions of the particles with different particles concentrations by using a magnetic resonance imaging (MRI) scanner, which showed that the $T_1$ and the $T_2$ relaxivities of the particles in water were $0.57mM^{-1}{\cdot}s^{-1}$ and $10.42mM^{-1}{\cdot}s^{-1}$, respectively. In addition, using an induction heating system, we evaluated their potentials for magnetic hyperthermia applications. The aqueous solution of the particles with a moderate concentration (smaller than 6.5 mg/mL) showed a saturation temperature larger than the hyperthermia target temperature of $42^{\circ}C$. These findings show that the CTAB-coated nickel ferrite particles are suitable for applications as $T_2$ contrast agents in MRI and heat generators in magnetic hyperthermia.

1H, 15N, and 13C Resonance Assignments of the Anti-CRISPR AcrIIA4 from Listeria monocytogenes Prophages

  • Kim, Iktae;Kim, Nak-Kyoon;Suh, Jeong-Yong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.3
    • /
    • pp.71-75
    • /
    • 2018
  • The CRISPR-Cas system is the adaptive immune system in bacteria and archaea against invading phages or foreign plasmids. In the type II CRISPR-Cas system, an endonuclease Cas9 cleaves DNA targets of phages as directed by guide RNA comprising crRNA and tracrRNA. To avoid targeting and destruction by Cas9, phages employ anti-CRISPR (Acr) proteins that act against host bacterial immunity by inactivating the CRISPR-Cas system. Here we report the backbone $^1H$, $^{15}N$, and $^{13}C$ resonance assignments of AcrIIA4 that inhibits endonuclease activity of type II-A Listeria monocytogenes Cas9 and also Streptococcus pyogenesis Cas9 using triple resonance nuclear magnetic resonance spectroscopy. The secondary structures of AcrIIA4 predicted by the backbone chemical shifts show an ${\alpha}{\beta}{\beta}{\beta}{\alpha}{\alpha}$ fold, which is used to determine the solution structure.

ESR detection of optically-induced hyperpolarization of nitrogen vacancy centers in diamond

  • An, Min-Gi;Shim, Jeong Hyun;Kim, Kiwoong;Oh, Sangwon;Jeong, Keunhong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.1
    • /
    • pp.9-15
    • /
    • 2020
  • Nitrogen vacancy center (NV center) in diamond has recently been appeared as a promising candidate for hyperpolarization applications due to its optical pumping property by laser. Optically Detected Magnetic Resonance (ODMR) has been used as a conventional method to obtain the resonance spectrum of NV centers. ODMR, however, has a shortcoming of sensitivity and a limitation of subjects, such that the degree of hyperpolarization can hardly be estimated, and that the spins other than NV centers are invisible. In contrast, Electron Spin Resonance (ESR) spectroscopy is known to proportionally reflect the degree of spin polarization. In this work, we successfully observed the optically-induced hyperpolarization of NV spins in diamond through CW-ESR spectroscopy with an X-band system. All the NV peaks were identified by calculating the eigenvalues of NV spin Hamiltonian. The intensities of NV peaks were enhanced over 240 times after optical pumping. The enhanced peaks corresponding to the transition from |ms=0> to |ms=-1> revealed inverted phases, while other peaks remained in-phase. The optically-induced hyperpolarization on NV spins can be a useful polarization source, leading to 13C nuclear hyperpolarization in diamond.

Application of Magnetic Resonance Thermometry (MRT) on Fully Developed Turbulent Pipe Flow using 3T and 7T MRI (완전발달 난류 원관 유동에서의 3T 및 7T MRI를 이용한 자기공명온도계의 적용)

  • You, Hyung Woo;Baek, Seungchan;Kim, Dong-Hyun;Lee, Whal;Oh, Sukhoon;Hwang, Wontae
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.1
    • /
    • pp.26-37
    • /
    • 2020
  • Magnetic resonance thermometry (MRT) is a technique capable of measuring three-dimensional mean temperature fields by utilizing temperature-dependent shifts in proton resonance frequency. In this study, experimental verification of the technique is obtained by measuring 3D temperature fields within fully developed turbulent pipe flow, using 3T and 7T MRI scanners. The effect of the proton resonance frequency (PRF) thermal constant is examined in detail.

An experimental study on resonance reduction of system with one degree of freedom by magneticfluid (자성 유체를 이용한 1자유도 계의 공진멸소에 관한 실험적 연구)

  • Chun, U. H.;Lee, B. G.;Hwang, S. S.;Lee, H. S.;Kim, J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.131-137
    • /
    • 1999
  • Under magnetism , as the magneticfluid is being itself magnetized, increase the apparent viscosity because of its body force and has the magnetic characteristics in response ot magnetism, the magnetic fluid is getting attention in various field. The magnetic fluid has the fluidity, which is a special characteristics of fluid and the magneticism , which is a special one of solid. Using this characteristics, this study has been proceeded to show the basic data for developing of a viscous damper with magnetism fluid as hydraulic fluid. Experimental study shows that the application of magnetic field is effective reducing the resonance characteristics of the spring-mass system.

  • PDF

Interference Issuses of Radio Frequency Identification Devices in Magnetic Resonance Imaging Systems and Computed Tomography Scan

  • Periyasamy, M.;Dhanasekaran, R.
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.295-301
    • /
    • 2015
  • We evaluated certain issues related to magnetic resonance imaging (MRI) coupled with the use of active 2.5 GHz radio frequency identification (RFID) tags for patient identification using low field (0.3 T) MRI and computed tomography (CT) scans. We also investigated the performance of the RFID reader located outside the MRI room by considering several factors. A total of ten active RFID tags were exposed to several MRI sequences and X-rays of CT scan. We found that only card type active RFID tags are suitable for patient identification purpose in MRI environment and both wristbands as well as card tags were suitable for the same in CT environment. Severe artifacts were found in the captured MRI and CT images when the area of the imaging was in proximity to the tags. No external factors affected the performance of active RFID reader stationed outside the MRI scan room.

FeCoB Films with Large Saturation Magnetization and High Magnetic Anisotropy Field to Attain High Ferromagnetic Resonance Frequency

  • Nakagawa, Shigeki;Hirata, Ken-Ichiro
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.155-158
    • /
    • 2013
  • FeCoB films were being prepared on a Ru underlayer by using the oblique incidence of sputtered and back-scattered particles which have a high in-plane magnetic anisotropy field $H_k$ above 400 Oe. It is suitable to attain such deposition condition when facing targets sputtering system. The in-plane X-ray diffraction analysis clarified that there is anisotropic residual stress which is the origin of the high in-plane magnetic anisotropy. The directional crystalline alignment and inclination of crystallite growth were also observed. Such anisotropic crystalline structures may affect the anisotropic residual stress in the films. The B content of 5.6 at.% was appropriate to induce such anisotropic residual stress and $H_k$ of 410 Oe in this experiment. The film with B content of 6 at.% possessed large saturation magnetization of 22 kG and high $H_k$ of 500 Oe. The film exhibited high ferromagnetic resonance frequency of 9.2 GHz.

Mini-review on fabrication of nitrogen vacancy center in diamond and its application to NMR

  • Oh, Sangwon
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.23 no.3
    • /
    • pp.73-80
    • /
    • 2019
  • Nitrogen-vacancy (NV) is one of the most popular solid-state spin systems for quantum sensing. NV has been used for vector magnetometry with nanometer spatial resolution and sensors for nuclear magnetic resonance (NMR) in samples with small volume, less than 10 pL. Various studies are in progress to make NV a complementary sensor for current NMR technique. Fabricating and improving diamond itself are one of the research topics. This mini-review contains recent develops in diamond fabrication and treatment for higher NV yield. Additionally, we briefly introduce the development status of NV in NMR.

Babinet-principle-inspired Metasurfaces for Resonant Enhancement of Local Magnetic Fields

  • Seojoo, Lee;Ji-Hun, Kang
    • Current Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.97-103
    • /
    • 2023
  • In this paper, we propose Babinet-principle-inspired metasurfaces for strong resonant enhancement of local magnetic fields. The metasurfaces are designed as complementary structures of original metasurfaces supporting the local enhancement of electric fields. We show numerically that the complementary structures can support spoof magnetic surface plasmons that induce strong local magnetic fields without sacrificing the deep sub-wavelength-thick nature of the metasurface. By introducing a periodic array of metallic rods in the proximity of the metasurfaces, we demonstrate that a resonant enhancement of the local magnetic fields, more than 80 times the amplitude of an incident magnetic field, can emerge from a resonance of the spoof magnetic surface plasmons.