Browse > Article
http://dx.doi.org/10.6564/JKMRS.2018.22.3.071

1H, 15N, and 13C Resonance Assignments of the Anti-CRISPR AcrIIA4 from Listeria monocytogenes Prophages  

Kim, Iktae (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University)
Kim, Nak-Kyoon (Advanced Analysis Center, Korea Institute of Science and Technology)
Suh, Jeong-Yong (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.22, no.3, 2018 , pp. 71-75 More about this Journal
Abstract
The CRISPR-Cas system is the adaptive immune system in bacteria and archaea against invading phages or foreign plasmids. In the type II CRISPR-Cas system, an endonuclease Cas9 cleaves DNA targets of phages as directed by guide RNA comprising crRNA and tracrRNA. To avoid targeting and destruction by Cas9, phages employ anti-CRISPR (Acr) proteins that act against host bacterial immunity by inactivating the CRISPR-Cas system. Here we report the backbone $^1H$, $^{15}N$, and $^{13}C$ resonance assignments of AcrIIA4 that inhibits endonuclease activity of type II-A Listeria monocytogenes Cas9 and also Streptococcus pyogenesis Cas9 using triple resonance nuclear magnetic resonance spectroscopy. The secondary structures of AcrIIA4 predicted by the backbone chemical shifts show an ${\alpha}{\beta}{\beta}{\beta}{\alpha}{\alpha}$ fold, which is used to determine the solution structure.
Keywords
AcrIIA4; anti-CRISPR; Cas9; NMR spectroscopy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Barrangou, C. Fremaux, H. Deveau, M. Richards, P. Boyaval, S. Moineau, D. A. Romero, and P. Horvath, Science 315, 1709 (2007)   DOI
2 S. J. Brouns, M. M. Jore, M. Lundgren, E. R. Westra, R. J. Slijkhuis, A. P. Snijders, M. J. Dickman, K. S. Makarova, E. V. Koonin, and J. van der Oost, Science 321, 960 (2008)   DOI
3 E. V. Koonin, K. S. Makarova, and F. Zhang, Curr. Opin. Microbiol. 37, 67 (2017)   DOI
4 W. Jiang and L. A. Marraffini, Annu. Rev. Microbiol. 69, 209 (2015)   DOI
5 S. H. Sternberg and J. A. Doudna, Mol. Cell 568, 568 (2015)
6 A. V. Wright, J. K. Nunez, and J. A. Doudna, Cell 164, 29 (2016)   DOI
7 J. E. Samson, A. H. Magadán, M. Sabri, and S. Moineau, Nat. Rev. Microbiol. 11, 675 (2013)   DOI
8 B. J. Rauch, M. R. Silvis, J. F. Hultquist, C. S. Waters, M. J. McGregor, N. J. Krogan, and J. Bondy-Denomy, Cell 168, 150 (2017)   DOI
9 D. Dong, M. Guo, S. Wang, Y. Zhu, S. Wang, Z. Xiong, J. Yang, Z. Xu, and Z. Huang, Nature 546, 436 (2017)   DOI
10 H. Yang and D. J. Patel, Mol. Cell 67, 117 (2017)   DOI
11 J. Shin, F. Jiang, J. J. Liu, N. L. Bray, B. J. Rauch, S. H. Baik, E. Nogales, J. Bondy-Denomy, J. E. Corn, and J. A. Doudna, Sci. Adv. 3, e1701620, (2017)
12 I. Kim, M. Jeong, D. Ka, M. Han, N. K. Kim, E. Bae, and J. Y. Suh, Sci. Rep. 8, 3883 (2018)   DOI
13 F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer, and A. Bax, J. Biomol. NMR 6, 277 (1995)
14 B. A. Johnson and R. A. Blevins, J. Biomol. NMR 4, 603 (1994)   DOI
15 Y. Shen, F. Delagio, G. Cornilescu, and A. Bax, J. Biomol. NMR 44, 213 (2009)   DOI
16 D. S. Garrett, R. Powers, A. M. Gronenborn, and G. M. Clore, J. Magn. Reson. 95, 214 (1991)