Browse > Article
http://dx.doi.org/10.5407/jksv.2020.18.1.026

Application of Magnetic Resonance Thermometry (MRT) on Fully Developed Turbulent Pipe Flow using 3T and 7T MRI  

You, Hyung Woo (Dept. of Mechanical Engineering, Seoul National University)
Baek, Seungchan (Dept. of Mechanical Engineering, Seoul National University)
Kim, Dong-Hyun (Dept. of Electrical and Electronic Engineering, Yonsei University)
Lee, Whal (Dept. of Radiology, Seoul National University Hospital)
Oh, Sukhoon (Korea Basic Science Institute)
Hwang, Wontae (Dept. of Mechanical Engineering, Seoul National University)
Publication Information
Journal of the Korean Society of Visualization / v.18, no.1, 2020 , pp. 26-37 More about this Journal
Abstract
Magnetic resonance thermometry (MRT) is a technique capable of measuring three-dimensional mean temperature fields by utilizing temperature-dependent shifts in proton resonance frequency. In this study, experimental verification of the technique is obtained by measuring 3D temperature fields within fully developed turbulent pipe flow, using 3T and 7T MRI scanners. The effect of the proton resonance frequency (PRF) thermal constant is examined in detail.
Keywords
Magnetic Resonance Thermometry; Proton Resonance Frequency Shift; Gradient Echo; Fully Developed Turbulent Pipe Flow; Thermal Analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Benson, M., Poppel, B., Elkins, C., Owkes, M., 2019, "Three-Dimensional Velocity and Temperature Field Measurements of Internal and External Turbine Blade Features Using Magnetic Resonance Thermometry", J. of Turbomachinery, Vol. 141(7)
2 Peters, R., Hinks, R., and Henkelman, R., 1998, "Ex Vivo Tissue-Type Independence in Proton-Resonance Frequency Shift MR Thermometry", Magnetic Resonance in Medicine, Vol. 40(3), pp. 454-459   DOI
3 Curry, T., Dowdey, J., and Murry, R., Christensen's Physics of Diagnostic Radiology 4th Ed., Lippincott Williams & Wilkins., 1990
4 Prince, J., Links, J., Medical Imaging Signals and Systems 2nd Ed., Pearson, 2014
5 Tseng, W., Su, M., Tseng, Y., 2016, "Introduction to Cardiovascular Magnetic Resonance: Technical Principles and Clinical Applications", Acta Cardiol Sin Vol. 32, pp. 129-144
6 Haacke, E. and Lenz, G., 1987, "Improving MR Image Quality in the Presence of Motion by Using Rephasing Gradients", AJR. American J. roentgenology, Vol. 148(6), pp. 1251-1258.   DOI
7 Pattany, P., Phillips, J., Chiu, L., Lipcamon, J., Duerk, J., McNally, J., and Mohapatra, S., 1987, "Motion Artifact Suppression Technique (MAST) for MR Imaging", J. Computer Assisted Tomography, Vol.11(3), pp. 369-377   DOI
8 Yuan, C., Gullberg, G., and Parker, D., 1989, "Flow-Induced Phase Effects and Compensation Technique for Slice-Selective Pulses", Magnetic Resonance Medicine, Vol. 9, pp. 161-176   DOI
9 Schneider, W., Bernstein, H., and Pople, J., 1958, "Proton Magnetic Resonance Chemical Shift of Free (gaseous) and Associated (liquid) Hydride Molecules", J. Chem. Phys., Vol. 28, pp. 601-607   DOI
10 Muller, N., 1965, "Concerning Structural Models for Water and Chemical-shift Data", J. Chem. Phys., Vol. 43, pp. 2555-2556   DOI
11 Hindman, C., 1966, "Proton Resonance Shift of Water in the Gas and Liquid States", J. Chem. Phys. Vol. 44, pp. 4582-4592   DOI
12 Muller, N. and Reiter, R., 1965, "Temperature Dependence of Chemical Shifts of Protons in Hydrogen Bonds", J. Chem. Phys., Vol. 42, pp. 3265-3269   DOI
13 Buchenberg, W., Wassermann, F., Grundmann, S., Jung, B, and Simpson, R., 2016, "Acquisition of 3D Temperature Distributions in Fluid Flow Using Proton Resonance Frequency Thermometry", Magnetic Resonance in Medicine, Vol. 76, pp. 145-155   DOI
14 Oh, S., Ryu, Y., Carluccio, G., Sica, C., and Collins, C., 2014, "Measurement of SAR-Induced Temperature Increase in a Phantom and In Vivo with Comparison to Numerical Simulation", Magnetic Resonance in Medicine, Vol. 71, pp. 1923-1931   DOI
15 Poorter, J., Wagter, C., Deene, Y., Thomsen, C., Stahlberg, F., and Achten, E., 1994, "The Proton-Resonance-Frequency-Shift Method Compared with Molecular Diffusion for Quantitative Measurement of Two-Dimensional TimeDependent Temperature Distribution in a Phantom", J. Magnetic Resonance, Series B, Vol. 103, pp. 234-241   DOI
16 Jones, F. and Harris, G., 1992, "ITS-90 Density of Water Formulation for Volumetric Standards Calibration", J. Res. Natl. Inst. Stand. Technol., Vol. 97, pp. 335   DOI
17 Wyatt, C., Soher, B., Maccarini, P., Charles, H.C., Stauffer, P., and Macfall, J., 2009, "Hyperthermia MRI temperature measurement: Evaluation of measurement stabilization strategies for extremity and breast tumors", Int. J. Hyperthermia, Vol. 25(6), pp. 422-433   DOI
18 Kestin, J., Sokolov, M., and Wakeham, W., 1978, "Viscosity of Liquid Water in the Range $-8^{\circ}C$ to $150^{\circ}C$", J. Phys. Chem. Ref. Data, Vol. 7(3)
19 Khoury, G., Schlatter, P., Noorani, A., Fischer, P., Brethouwer, G., and Johansson, A., 2013, "Direct Numerical Simulation of Turbulent Pipe Flow at Moderately High Reynolds Numbers", Flow, Turbulence and Combustion, Vol. 91, pp. 475-495   DOI
20 National Electrical Manufacturers Association (NEMA), Determination of signal-to-noise ratio(SNR) in diagnostic magnetic resonance imaging, NEMA standard publication MS 1-2008, 2008
21 John D'Errico (2019). Inpaint nans, (https://www.mathworks.com/matlabcentral/fileexchange/4551-inpaint_nans), MATLAB Central File Exchange. Retrieved July 2nd, 2019.
22 Fite, BZ., Liu, Y., Kruse, DE., Caskey, CF., and Walton, JH., 2012, "Magnetic Resonance Thermometry at 7T for Real-Time Monitoring and Correction of Ultrasound Induced Mild Hyperthermia", PLoS ONE 7(4)
23 Wassermann, F., Buchenberg, W., Simpson, R., Jung, B. and Grundmann, S., 2014, "Applying Magnetic Resonance Thermometry to Engineering Flows", 17th Int. Symposium on Applications of Laser Techniques to Fluid Mechanics
24 Spirnak, J., Samland, M., Tremont, B., McQuirter, A. Williams, E., Benson, M., Poppel, B., VerHulst, C., Elkins, C., Burton, L., Eaton, J., and Owkes, M., 2016, "Validation of Magnetic Resonance Thermometry through Experimental and Computational Approaches", AIAA Propulsion and Energy, 10.2514/6.2016-4741.
25 Kaufman, L., Kramer, D., Crooks, L. Ortendahl, D., 1989, "Measuring Signal-to-Noise Ratios in MR Imaging", Radiology, Vol. 173, pp. 265-267   DOI
26 Murphy, B.W., Carson, P.L., Ellis, J.H., Zhang, Y.T., Hyde, R.J., and Chenevert, T.L., 1993, "Signal-to-Noise Measures for Magnetic Resonance Imagers", Magnetic Resonance Imaging, Vol. 11, pp. 425-428   DOI
27 Dietrich, O., Raya, J.G., Reeder, S.B., Reiser, M.F., and Schoenberg, S.O., 2007, "Measurement of Signal-to-Noise Ratios in MR Images: Influence of multichannel Coils, Parallel Imaging, and Reconstruction Filters", J. Magnetic Resonance Imaging, Vol. 26, pp. 375-385   DOI
28 Childs, A.S., Malik, S.J., O'Regan, D.P., and Hajnal, J.V., 2013, "Impact of number of channels of RG shimming at 3T", Magn. Reson. Mater. Phy., Vol. 26, pp. 401-410   DOI
29 Gruber, B., Froeling, M., Leiner, T., and Klomp, D., 2018, "RF coils: A practical guide for nonphysicists", J. Magn. Reson. Imaging, Vol. 48(3), pp. 590-604   DOI
30 Katscher, U. and Bornert, P., 2006, "Parallel RF transmission in MRI", NRM Biomed., Vol. 19, pp. 393-400