Browse > Article
http://dx.doi.org/10.3938/jkps.73.1334

Cetyl Trimethyl Ammonium Bromide-coated Nickel Ferrite Nanoparticles for Magnetic Hyperthermia and T2 Contrast Agents in Magnetic Resonance Imaging  

Lee, Da-Aemm (Department of Physics, Kyungpook National University)
Bae, Hongsubm (Department of Physics, Kyungpook National University)
Rhee, Ilsum (Department of Physics, Kyungpook National University)
Abstract
Spherical nickel ferrite nanoparticles were synthesized using the thermal decomposition method and coated with cetyl trimethyl ammonium bromide (CTAB) after the synthesis. Transmission electron microscopy images showed that the average diameter of the particles was 9.40 nm. The status of the CTAB-coating on the surface of the particles was checked using Fourier-transform infrared spectroscopy. Their hysteresis curve showed that the particles exhibited a superparamagnetic behavior. The $T_1$ and the $T_2$ relaxations of the nuclear spins were observed in aqueous solutions of the particles with different particles concentrations by using a magnetic resonance imaging (MRI) scanner, which showed that the $T_1$ and the $T_2$ relaxivities of the particles in water were $0.57mM^{-1}{\cdot}s^{-1}$ and $10.42mM^{-1}{\cdot}s^{-1}$, respectively. In addition, using an induction heating system, we evaluated their potentials for magnetic hyperthermia applications. The aqueous solution of the particles with a moderate concentration (smaller than 6.5 mg/mL) showed a saturation temperature larger than the hyperthermia target temperature of $42^{\circ}C$. These findings show that the CTAB-coated nickel ferrite particles are suitable for applications as $T_2$ contrast agents in MRI and heat generators in magnetic hyperthermia.
Keywords
Nickel ferrite nanoparticles; CTAB coating; Magnetic resonance imaging contrast agents; Magnetic hyperthermia;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Ahmad, H. Bae, I. Rhee and S. Hong, J. Korean Phys. Soc. 70, 615 (2017).   DOI
2 Y. Iqbal, H. Bae, I. Rhee and S. Hong, J. Nanosci. Nonotech. 16, 11862 (2016).   DOI
3 H. Bae, T. Ahmad, I. Rhee, Y. Chang, S. Jin et al., Nano. Res. Lett. 7, 44 (2012).   DOI
4 T. Ahmad, H. Bae, I. Rhee, Y. Chang, S. Jin et al., J. Nanosci. Nanotech. 12, 5132 (2012).   DOI
5 A. G. Roca, D. Carmona, N. Miguel-Sancho, O. Bomati-Miguel, F. Balas et al., Nanotechnology 23, 155603 (2012).   DOI
6 W. Cheng, S. Dong and E. Wang, Langmuir 19, 9434 (2003).   DOI
7 H. Kobayashi, R. Watanabe and P. L. Choyke, Theranostics 4, 81 (2014).   DOI
8 R. D. Raland and J. P. Borah, J. Phys. D: Appl. Phys. 50, 035001 (2017).   DOI
9 A. Shokuhfar and S. Afghahi, Nano. Res. Lett. 8, 540 (2013).   DOI
10 I. Rhee, New Physics: Sae Mulli, 65, 411 (2015).   DOI
11 T. Ahmad, H. Bae, Y. Iqbal, I. Rhee, S. Hong et al., J. Magn. Magn. Mater. 381, 151 (2015).   DOI
12 Q. A. Pankhurst, J. Connolly, S. K. Jones and J. Dobson, J. Phys. D: Appl. Phys. 36, R167 (2003).   DOI
13 A. Ahmad, H. Bae, I. Rhee and S. Hong, J. Magn. Magn. Mater. 447, 42 (2018).   DOI
14 B. Tomanek, U. Iqbal, B. Blasiak, A. Abulrob, H. Albaghdadi et al., Neuro-Oncology 14, 53 (2012).   DOI
15 W. H. De Jong and P. J. A. Borm, Int. J. Nanomedicine 3, 133 (2008).
16 A. Z. Wilczewska, K. Niemirowicz, K. H. Markiewicz and H. Car, Pharmacol. Rep. 64, 1020 (2012).   DOI
17 B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials, 2nd edition (John Wiley & Sons, 2011).
18 B. Thiesen and A. Jordan, Int. J. Hyperthermia 24, 467 (2008).   DOI
19 K. Cheng, M. Yang, R. Zhang, C. Qin, X. Su et al., ACS Nano 8, 9884 (2014).   DOI
20 R. D. Tucker, C. E. Platz, C. Huidobro and T. Larson, Urology 60, 166 (2002).   DOI
21 T. Kobayashi, K. Kakimi, E. Nakayama and K. Jimbow, Nanomedicine 9. 1715 (2014).   DOI
22 F. Shubitidze, K. Kekalo, R. Stigliano and I. Baker, J. Appl. Phys. 117, 094302 (2015).   DOI
23 I. Astefanoaei, I. Dumitru, H. Chiriac and A. Stancu, J. Appl. Phys. 115, 17B531 (2014).   DOI
24 T. Ahmad, H. Bae, I. Rhee, S. Hong, Y. Chang et al., J. Nanosci. Nanotech. 11, 5645 (2011).   DOI
25 Y. Okuhata, Adv. Drug Deliv. Rev. 37, 121 (1999).   DOI
26 M. Menelaou, K. Georgoula, K. Simeonidis and C. Dendrinou-Samara, Dalton Trans. 43, 3626 (2014).   DOI
27 P. Tan, J-X. Qin, X-Q. Liu, X-Q. Yin and L-B. Sun, J. Mater. Chem. A 2, 4698 (2014).   DOI
28 A. Li, H. Ma and J. Liu, RSC Adv. 6, 63704 (2016).   DOI
29 Y. Iqbal, H. Bae, I. Rhee and S. Hong, J. Magn. Magn. Mater. 409, 80 (2016).   DOI