DOI QR코드

DOI QR Code

Mini-review on fabrication of nitrogen vacancy center in diamond and its application to NMR

  • Oh, Sangwon (Ultra-low Magnetic Field Team, Korea Research Institute of Standards and Science)
  • Received : 2019.09.17
  • Accepted : 2019.09.18
  • Published : 2019.09.20

Abstract

Nitrogen-vacancy (NV) is one of the most popular solid-state spin systems for quantum sensing. NV has been used for vector magnetometry with nanometer spatial resolution and sensors for nuclear magnetic resonance (NMR) in samples with small volume, less than 10 pL. Various studies are in progress to make NV a complementary sensor for current NMR technique. Fabricating and improving diamond itself are one of the research topics. This mini-review contains recent develops in diamond fabrication and treatment for higher NV yield. Additionally, we briefly introduce the development status of NV in NMR.

Keywords

References

  1. A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. Borczyskowski, Science 276, 2012 (1997) https://doi.org/10.1126/science.276.5321.2012
  2. G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, and C. Shin, Nature 455, 648 (2008) https://doi.org/10.1038/nature07278
  3. J. Taylor, P. Capellaro, L. Childress, L. Jiang, D. Budker, and P. Hemmer, Nat. Phys. 4, 810 (2008) https://doi.org/10.1038/nphys1075
  4. T. Staudacher, F. Shi, S. Pezzagna, J. Meijer, J. Du, and C. A. Meriles, Science 339, 561 (2013) https://doi.org/10.1126/science.1231675
  5. M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, Phys. Rep. 528, 1 (2013) https://doi.org/10.1016/j.physrep.2013.02.001
  6. L. Rondin, J. Tetienne, T. Hingant, J. Roch, P. Maletinsky, and V. Jacques, Rep. Prog. Phys. 77, 056503 (2014) https://doi.org/10.1088/0034-4885/77/5/056503
  7. J. Barry, J. Schloss, E. Bauch, M. Turner, C. Hart, and L. Pham, arXiv:1903.08176v1
  8. "The element six cvd diamond handbook", Elementsix, https://www.e6.com
  9. "High pressure high temperature method", Tairus, https://www.tarius-gems.com/technologies/hpht-method
  10. C.B. Hartland, Ph. D dissertation, University of Warwick (2014)
  11. J. M. Schloss, Ph. D dissertation, Massachusetts Insititute of Technology (2019)
  12. A. Tallaire, V. Mille, O. Brinza, T. Thi, J. Brom, and Y. Loguinov, Diam. Relat. Mater. 77, 146 (2017) https://doi.org/10.1016/j.diamond.2017.07.002
  13. T. Chakraborty, F. Lehmann, J. Zhang, S. Borgsdorf, N. Wohrl, R. Remfort, V. Buck, U. Kohler, and D. Suter, Phys. Rev. Mater. 3, 065205 (2019) https://doi.org/10.1103/PhysRevMaterials.3.065205
  14. J. Achard, A. Tallaire, V. Mille, M. Naamoun, O. Brinza, and A. Boussadi, Phys. Status Solidi. A 211, 2264 (2014) https://doi.org/10.1002/pssa.201431181
  15. C. E. Bradley, J. Randall, M. H. Abobeih, R. C. Berrevoets, M. J. Degen, and M. A. Bakker, arXiv:1905.02094v2
  16. B. Rose, D. Huang, Z. Zhang, P. Stevenson, and A. Tyryshkin, Science 361, 60 (2018) https://doi.org/10.1126/science.aao0290
  17. S. Dannefaer, P. Mascher, and D. Kerr, Diam. Relat. Mater. 1, 407 (1992) https://doi.org/10.1016/0925-9635(92)90138-E
  18. J. Barry, M. J. Turner, J. M. Schloss, D. Glenn, Y. Song, and M. D. Lukin, Proc. Nat. Acad. Sci. USA 113, 14133 (2016)
  19. A. M. Edmonds, Ph.D dissertation, University of Warwick (2008)
  20. A. M. Edmonds, U. D'Haenens-Johansson, R. J. Cruddace, M. Newton, K. Fu, and C. Santori, Phys. Rev. B. 86, 035201 (2012) https://doi.org/10.1103/PhysRevB.86.035201
  21. L. Rondin, G. Dantelle, A. Slablab, F. Grosshans, F. Treussart, and B. Bergonzo, Phys. Rev. B. 82, 115449 (2010) https://doi.org/10.1103/PhysRevB.82.115449
  22. K. Fu, C. Santori, P. Barclay, and R. Beausoleil, App. Phys. Lett. 96, 121907 (2010) https://doi.org/10.1063/1.3364135
  23. Y. Chu, N. de Leon, B. Shields, B. Hausmann, R. Evans, and E. Togan, Nano. Lett. 14, 1982 (2014) https://doi.org/10.1021/nl404836p
  24. M. Hauf, B. Grotz, B. Naydenov, M. Dankerl, S. Pezzagna, and J. Meijer, Phys. Rev. B. 83, 081304 (2011) https://doi.org/10.1103/PhysRevB.83.081304
  25. J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. GrotzKorringa, and R. Reuter, ACS. Nano 3, 1959 (2009) https://doi.org/10.1021/nn9003617
  26. J. Tetienne, R. de Gille, D. Broadway, T. Teraji, S. Lillie, and J. McCoey, Phys. Rev. B. 97, 085402 (2018) https://doi.org/10.1103/PhysRevB.97.085402
  27. D. Bucher, D. Craik, M. Backlund, M. Turner, O. Dor, and D. Glenn, Nat. Protoc. 14, 2707 (2019) https://doi.org/10.1038/s41596-019-0201-3
  28. A. Collins, New. Diam. Front. C. Tec. 17, 47 (2007)
  29. J. Loubser J and J. Wyk, Rep. Prog. Phys. 41, 1201 (1978) https://doi.org/10.1088/0034-4885/41/8/002
  30. F. Oliveira, D. Antonov, Y. Wang, P. Neumann, S. Momenzadeh, and T. Haussermann, Nat. Commun. 8, 15409 (2017) https://doi.org/10.1038/ncomms15409
  31. J. Koike, D. Parkin, and T. Mitchell, Appl. Phys. Lett. 60, 1450 (1992) https://doi.org/10.1063/1.107267
  32. D. Twitchen, S. Geoghegan, and N. Perkins, Patent WO149775, 12 29 (2010)
  33. B. Campbell and A. Mainwood, Phys. Stat. Sol. 181, 99 (2000) https://doi.org/10.1002/1521-396X(200009)181:1<99::AID-PSSA99>3.0.CO;2-5
  34. V. Acosta, E. Bauch, M. Ledbetter, C. Santori, K. Fu, and P. Barclay, Phys. Rev. B. 80, 115202 (2009) https://doi.org/10.1103/PhysRevB.80.115202
  35. Y. Mita, Phys. Rev. B. 53, 11360 (1996) https://doi.org/10.1103/PhysRevB.53.11360
  36. S. Alsid, J. Barry, L. Pham, J. Schloss, M. O'Keeffe, and P. Cappellaro, arXiv:1906.11406v1
  37. P. Baranov, H. Bardeleben, F. Jelezko, and J. Wrachtrup "Retrospective: Magnetic resonance studies of intrinsic defects in semiconductors", pp. 179-211, Vienna: Springer (2017)
  38. J. Lomer and A. Wild, Radiation Effects 17, 37 (1973) https://doi.org/10.1080/00337577308232595
  39. T. Yamamoto, T. Umeda, K. Watanabe, S. Onoda, M. Markham, and D. Twitchen, Phys. Rev. B. 88, 075206 (2013) https://doi.org/10.1103/PhysRevB.88.075206
  40. E. Fraczek, V. Savitski, M. Dale, B. Breeze, P. Diggle, and M. Markham, Opt. Mater. Express. 7, 2571 (2017) https://doi.org/10.1364/OME.7.002571
  41. B. Chernbrod and G. Berman, J. Appl. Phys. 97, 014903 (2005) https://doi.org/10.1063/1.1829373
  42. J. Maze, P. Stanwix, J. Hodges, S. Hong, J. Taylor, and P. Cappellaro, Nature 455, 644 (2008) https://doi.org/10.1038/nature07279
  43. H. Mamin, M. Kim, M. Sherwood, C. Rettner, K. Ohno, and D. Awschalom, Science 339, 557 (2013) https://doi.org/10.1126/science.1231540
  44. D. Glenn, D. Bucher, J. Lee, M. Lukin, H. Park, and R. Walsworth, Nature 555, 351 (2018) https://doi.org/10.1038/nature25781
  45. J. Smits, J. Damron, P. Kehayias, A. McDowell, N. Mosavian, and I. Fescenko, Sci. Adv. 5, 7895 (2019) https://doi.org/10.1126/sciadv.aaw7895