DOI QR코드

DOI QR Code

Cetyl Trimethyl Ammonium Bromide-coated Nickel Ferrite Nanoparticles for Magnetic Hyperthermia and T2 Contrast Agents in Magnetic Resonance Imaging

  • Lee, Da-Aemm (Department of Physics, Kyungpook National University) ;
  • Bae, Hongsubm (Department of Physics, Kyungpook National University) ;
  • Rhee, Ilsum (Department of Physics, Kyungpook National University)
  • Received : 2018.01.15
  • Accepted : 2018.06.18
  • Published : 2018.11.15

Abstract

Spherical nickel ferrite nanoparticles were synthesized using the thermal decomposition method and coated with cetyl trimethyl ammonium bromide (CTAB) after the synthesis. Transmission electron microscopy images showed that the average diameter of the particles was 9.40 nm. The status of the CTAB-coating on the surface of the particles was checked using Fourier-transform infrared spectroscopy. Their hysteresis curve showed that the particles exhibited a superparamagnetic behavior. The $T_1$ and the $T_2$ relaxations of the nuclear spins were observed in aqueous solutions of the particles with different particles concentrations by using a magnetic resonance imaging (MRI) scanner, which showed that the $T_1$ and the $T_2$ relaxivities of the particles in water were $0.57mM^{-1}{\cdot}s^{-1}$ and $10.42mM^{-1}{\cdot}s^{-1}$, respectively. In addition, using an induction heating system, we evaluated their potentials for magnetic hyperthermia applications. The aqueous solution of the particles with a moderate concentration (smaller than 6.5 mg/mL) showed a saturation temperature larger than the hyperthermia target temperature of $42^{\circ}C$. These findings show that the CTAB-coated nickel ferrite particles are suitable for applications as $T_2$ contrast agents in MRI and heat generators in magnetic hyperthermia.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. I. Rhee, New Physics: Sae Mulli, 65, 411 (2015). https://doi.org/10.3938/NPSM.65.411
  2. T. Ahmad, H. Bae, Y. Iqbal, I. Rhee, S. Hong et al., J. Magn. Magn. Mater. 381, 151 (2015). https://doi.org/10.1016/j.jmmm.2014.12.077
  3. Q. A. Pankhurst, J. Connolly, S. K. Jones and J. Dobson, J. Phys. D: Appl. Phys. 36, R167 (2003). https://doi.org/10.1088/0022-3727/36/13/201
  4. A. Ahmad, H. Bae, I. Rhee and S. Hong, J. Magn. Magn. Mater. 447, 42 (2018). https://doi.org/10.1016/j.jmmm.2017.09.057
  5. W. H. De Jong and P. J. A. Borm, Int. J. Nanomedicine 3, 133 (2008).
  6. A. Z. Wilczewska, K. Niemirowicz, K. H. Markiewicz and H. Car, Pharmacol. Rep. 64, 1020 (2012). https://doi.org/10.1016/S1734-1140(12)70901-5
  7. B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials, 2nd edition (John Wiley & Sons, 2011).
  8. B. Tomanek, U. Iqbal, B. Blasiak, A. Abulrob, H. Albaghdadi et al., Neuro-Oncology 14, 53 (2012). https://doi.org/10.1093/neuonc/nor183
  9. K. Cheng, M. Yang, R. Zhang, C. Qin, X. Su et al., ACS Nano 8, 9884 (2014). https://doi.org/10.1021/nn500188y
  10. R. D. Tucker, C. E. Platz, C. Huidobro and T. Larson, Urology 60, 166 (2002). https://doi.org/10.1016/S0090-4295(02)01653-9
  11. B. Thiesen and A. Jordan, Int. J. Hyperthermia 24, 467 (2008). https://doi.org/10.1080/02656730802104757
  12. T. Kobayashi, K. Kakimi, E. Nakayama and K. Jimbow, Nanomedicine 9. 1715 (2014). https://doi.org/10.2217/nnm.14.106
  13. F. Shubitidze, K. Kekalo, R. Stigliano and I. Baker, J. Appl. Phys. 117, 094302 (2015). https://doi.org/10.1063/1.4907915
  14. I. Astefanoaei, I. Dumitru, H. Chiriac and A. Stancu, J. Appl. Phys. 115, 17B531 (2014). https://doi.org/10.1063/1.4868709
  15. T. Ahmad, H. Bae, I. Rhee, S. Hong, Y. Chang et al., J. Nanosci. Nanotech. 11, 5645 (2011). https://doi.org/10.1166/jnn.2011.4502
  16. A. Ahmad, H. Bae, I. Rhee and S. Hong, J. Korean Phys. Soc. 70, 615 (2017). https://doi.org/10.3938/jkps.70.615
  17. Y. Iqbal, H. Bae, I. Rhee and S. Hong, J. Nanosci. Nonotech. 16, 11862 (2016). https://doi.org/10.1166/jnn.2016.13608
  18. H. Bae, T. Ahmad, I. Rhee, Y. Chang, S. Jin et al., Nano. Res. Lett. 7, 44 (2012). https://doi.org/10.1186/1556-276X-7-44
  19. T. Ahmad, H. Bae, I. Rhee, Y. Chang, S. Jin et al., J. Nanosci. Nanotech. 12, 5132 (2012). https://doi.org/10.1166/jnn.2012.6368
  20. A. G. Roca, D. Carmona, N. Miguel-Sancho, O. Bomati-Miguel, F. Balas et al., Nanotechnology 23, 155603 (2012). https://doi.org/10.1088/0957-4484/23/15/155603
  21. W. Cheng, S. Dong and E. Wang, Langmuir 19, 9434 (2003). https://doi.org/10.1021/la034818k
  22. H. Kobayashi, R. Watanabe and P. L. Choyke, Theranostics 4, 81 (2014). https://doi.org/10.7150/thno.7193
  23. R. D. Raland and J. P. Borah, J. Phys. D: Appl. Phys. 50, 035001 (2017). https://doi.org/10.1088/1361-6463/aa4e9a
  24. A. Shokuhfar and S. Afghahi, Nano. Res. Lett. 8, 540 (2013). https://doi.org/10.1186/1556-276X-8-540
  25. M. Menelaou, K. Georgoula, K. Simeonidis and C. Dendrinou-Samara, Dalton Trans. 43, 3626 (2014). https://doi.org/10.1039/c3dt52860j
  26. P. Tan, J-X. Qin, X-Q. Liu, X-Q. Yin and L-B. Sun, J. Mater. Chem. A 2, 4698 (2014). https://doi.org/10.1039/c3ta14491g
  27. A. Li, H. Ma and J. Liu, RSC Adv. 6, 63704 (2016). https://doi.org/10.1039/C6RA07336K
  28. Y. Okuhata, Adv. Drug Deliv. Rev. 37, 121 (1999). https://doi.org/10.1016/S0169-409X(98)00103-3
  29. Y. Iqbal, H. Bae, I. Rhee and S. Hong, J. Magn. Magn. Mater. 409, 80 (2016). https://doi.org/10.1016/j.jmmm.2016.02.078