• Title/Summary/Keyword: MID

Search Result 8,271, Processing Time 0.036 seconds

INTEGRAL DOMAINS WITH FINITELY MANY STAR OPERATIONS OF FINITE TYPE

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.20 no.2
    • /
    • pp.185-191
    • /
    • 2012
  • Let D be an integral domain and SF(D) be the set of star operations of finite type on D. We show that if ${\mid}SF(D){\mid}$ < ${\infty}$, then every maximal ideal of D is a $t$-ideal. We give an example of integrally closed quasi-local domains D in which the maximal ideal is divisorial (so a $t$-ideal) but ${\mid}SF(D){\mid}={\infty}$. We also study the integrally closed domains D with ${\mid}SF(D){\mid}{\leq}2$.

Remarks on M-ideals of compact operators

  • Cho, Chong-Man
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.445-453
    • /
    • 1996
  • A closed subspace J of a Banach space X is called an M-ideal in X if the annihilator $J^\perp$ of J is an L-summand of $X^*$. That is, there exists a closed subspace J' of $X^*$ such that $X^* = J^\perp \oplus J'$ and $\left\$\mid$ p + q \right\$\mid$ = \left\$\mid$ p \right\$\mid$ + \left\$\mid$ q \right\$\mid$$ wherever $p \in J^\perp and q \in J'$.

  • PDF

On the iteration of holomorphic mappings in $ $

  • Kwon, Oh-Nam
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.3
    • /
    • pp.681-694
    • /
    • 1996
  • Let F be a germ of analytic transformation from $(C^2, O)$ to $C^2, O)$. Let a, b denote the eigenvalues of DF(O). O is called a semi-attrative fixed point if $$\mid$a$\mid$ = 1, 0 < $\mid$b$\mid$ < 1 = 1, 0 < $\mid$a$\mid$ < 1)$. O is called a super-attractive fixed point if a = 0, b = 0. We discuss such a mapping from the point of view of dynamical systems.

  • PDF

INEQUALITIES OF OPERATOR POWERS

  • Lee, Eun-Young;Lee, Mi-Ryeong;Park, Hae-Yung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Duggal-Jeon-Kubrusly([2]) introduced Hilbert space operator T satisfying property ${\mid}T{\mid}^2{\leq}{\mid}T^2{\mid}$, where ${\mid}T{\mid}=(T^*T)^{1/2}$. In this paper we extend this property to general version, namely property B(n). In addition, we construct examples which distinguish the classes of operators with property B(n) for each $n{\in}\mathbb{N}$.

  • PDF

ON k-QUASI-CLASS A CONTRACTIONS

  • Jeon, In Ho;Kim, In Hyoun
    • Korean Journal of Mathematics
    • /
    • v.22 no.1
    • /
    • pp.85-89
    • /
    • 2014
  • A bounded linear Hilbert space operator T is said to be k-quasi-class A operator if it satisfy the operator inequality $T^{*k}{\mid}T^2{\mid}T^k{\geq}T^{*k}{\mid}T{\mid}^2T^k$ for a non-negative integer k. It is proved that if T is a k-quasi-class A contraction, then either T has a nontrivial invariant subspace or T is a proper contraction and the nonnegative operator $D=T^{*k}({\mid}T^2{\mid}-{\mid}T{\mid}^2)T^k$ is strongly stable.

ON A CLASS OF OPERATORS RELATED TO PARANORMAL OPERATORS

  • Lee, Mi-Young;Lee, Sang-Hun
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.1
    • /
    • pp.25-34
    • /
    • 2007
  • An operator $T{\in}L(H)$ is said to be p-paranormal if $$\parallel{\mid}T\mid^pU{\mid}T\mid^px{\parallel}x\parallel\geq\parallel{\mid}T\mid^px\parallel^2$$ for all $x{\in}H$ and p > 0, where $T=U{\mid}T\mid$ is the polar decomposition of T. It is easy that every 1-paranormal operator is paranormal, and every p-paranormal operator is paranormal for 0 < p < 1. In this note, we discuss some properties for p-paranormal operators.

LOCALIZATION PROPERTY AND FRAMES

  • HA, YOUNG-HWA;RYU, JU-YEON
    • Honam Mathematical Journal
    • /
    • v.27 no.2
    • /
    • pp.233-241
    • /
    • 2005
  • A sequence $\{f_i\}^{\infty}_{i=1}$ in a Hilbert space H is said to be exponentially localized with respect to a Riesz basis $\{g_i\}^{\infty}_{i=1}$ for H if there exist positive constants r < 1 and C such that for all i, $j{\in}N$, ${\mid}{\mid}{\leq}Cr^{{\mid}i-j{\mid}}$ and ${\mid}{\mid}{\leq}Cr^{{\mid}i-j{\mid}}$ where $\{{\tilde{g}}_i\}^{\infty}_{i=1}$ is the dual basis of $\{g_i\}^{\infty}_{i=1}$. It can be shown that such sequence is always a Bessel sequence. We present an additional condition which guarantees that $\{f_i\}^{\infty}_{i=1}$ is a frame for H.

  • PDF

A NOTE ON OPERATORS ON FINSLER MODULES

  • TAGHAVI, A.;JAFARZADEH, JAFARZADEH
    • Honam Mathematical Journal
    • /
    • v.28 no.4
    • /
    • pp.533-541
    • /
    • 2006
  • let E be a Finsler modules over $C^*$-algebras. A with norm-map $\rho$ and L(E) set of all A-linear bonded operators on E. We show that the canonical homomorphism ${\phi}:L(E){\rightarrow}L(E_I)$ sending each operator T to its restriction $T|E_I$ is injective if and only if I is an essential ideal in the underlying $C^*$-algebra A. We also show that $T{\in}L(E)$ is a bounded below if and only if ${\mid}{\mid}x{\mid}{\mid}={\mid}{\mid}{\rho}{\prime}(x){\mid}{\mid}$ is complete, where ${\rho}{\prime}(x)={\rho}(Tx)$ for all $x{\in}E$. Also, we give a necessary and sufficient condition for the equivalence of the norms generated by the norm map.

  • PDF

ON THE SEMI-HYPONORMAL OPERATORS ON A HILBERT SPACE

  • Cha, Hyung-Koo
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.597-602
    • /
    • 1997
  • Let H be a separable complex Hilbert space and L(H) be the *-algebra of all bounded linear operators on H. For $T \in L(H)$, we construct a pair of semi-positive definite operators $$ $\mid$T$\mid$_r = (T^*T)^{\frac{1}{2}} and $\mid$T$\mid$_l = (TT^*)^{\frac{1}{2}}. $$ An operator T is called a semi-hyponormal operator if $$ Q_T = $\mid$T$\mid$_r - $\mid$T$\mid$_l \geq 0. $$ In this paper, by using a technique introduced by Berberian [1], we show that the approximate point spectrum $\sigma_{ap}(T)$ of a semi-hyponomal operator T is empty.

  • PDF

ON THE NORM OF THE OPERATOR aI + bH ON Lp(ℝ)

  • Ding, Yong;Grafakos, Loukas;Zhu, Kai
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.1209-1219
    • /
    • 2018
  • We provide a direct proof of the following theorem of Kalton, Hollenbeck, and Verbitsky [7]: let H be the Hilbert transform and let a, b be real constants. Then for 1 < p < ${\infty}$ the norm of the operator aI + bH from $L^p(\mathbb{R})$ to $L^p(\mathbb{R})$ is equal to $$\({\max_{x{\in}{\mathbb{R}}}}{\frac{{\mid}ax-b+(bx+a){\tan}{\frac{\pi}{2p}}{\mid}^p+{\mid}ax-b-(bx+a){\tan}{\frac{\pi}{2p}}{\mid}^p}{{\mid}x+{\tan}{\frac{\pi}{2p}}{\mid}^p+{\mid}x-{\tan}{\frac{\pi}{2p}}{\mid}^p}}\)^{\frac{1}{p}}$$. Our proof avoids passing through the analogous result for the conjugate function on the circle, as in [7], and is given directly on the line. We also provide new approximate extremals for aI + bH in the case p > 2.