DOI QR코드

DOI QR Code

ON A CLASS OF OPERATORS RELATED TO PARANORMAL OPERATORS

  • Lee, Mi-Young (Department of Mathematics College of Natural Science Kyungpook National University) ;
  • Lee, Sang-Hun (Department of Mathematics College of Natural Science Kyungpook National University)
  • Published : 2007.01.31

Abstract

An operator $T{\in}L(H)$ is said to be p-paranormal if $$\parallel{\mid}T\mid^pU{\mid}T\mid^px{\parallel}x\parallel\geq\parallel{\mid}T\mid^px\parallel^2$$ for all $x{\in}H$ and p > 0, where $T=U{\mid}T\mid$ is the polar decomposition of T. It is easy that every 1-paranormal operator is paranormal, and every p-paranormal operator is paranormal for 0 < p < 1. In this note, we discuss some properties for p-paranormal operators.

Keywords

References

  1. A. Aluthge, On p-hyponormal operators for 0 < p < 1, Integral Equations Operator Theory 13 (1990), no. 3, 307-315 https://doi.org/10.1007/BF01199886
  2. A. Aluthge and D.Wang, w-Hyponormal operators, Integral Equations Operator Theory 36 (2000), no. 1, 1-10 https://doi.org/10.1007/BF01236285
  3. A. Aluthge and D.Wang, An operators inequality which implies paranormality, Math. Inequal. Appl. 2 (1999), no. 1, 113-119
  4. T. Ando, Operators with a norm condition, Acta Sci. Math. (Szeged) 133 (1972), 169-178
  5. M. Cho and M. Itoh, Putnam's inequality for p-hyponormal operators, Proc. Amer. Math. Soc. l23 (1995), no. 8, 2435-2440 https://doi.org/10.2307/2161271
  6. M. Fujii, C. Himeji, and A. Matsumoto, Theorems of Ando and Saito for p-hyponormal operators, Math. Japon. 39 (1994), no. 3, 595-598
  7. M. Fujii, S. Izumino, and R. Nakamoto, Classes of operators determined by the Heinz¡ - Kato - Furuta inequality and the Holder-McCarthy inequality, Nihonkai Math. J. 5 (1994), no. 1, 61-67
  8. M. Fujii, D. Jung, S.-H. Lee, M.-Y. Lee, and R. Nakamoto, Some classses of operators related to paranormal and log-hyponormal operators, Math. Japon. 51 (2000), no. 3, 395-402
  9. T. Furuta, On the class of paranormal operators, Proc. Japan Acad. 43 (1967), 594-598 https://doi.org/10.3792/pja/1195521514
  10. T. Furuta, On the polar decomposition of an operator, Acta Sci. Math. (Szeged) 46 (1983), no. 1-4, 261-268
  11. T. Furuta, Invitation to linear operators, Taylor & Francis, Ltd., London, 2001
  12. P. R. Halmos, A Hilbert Space Problem Book, D. Van Norstand Co., Inc., Princeton, N. J.-Toronto, 1967
  13. G. K. Pederson, Analysis Now, Graduate Texts in Mathematics, 118, 1989
  14. C. R. Putnam, An inequality for the area of hyponormal spectra, Math. Z. 116 (1970), 323-330 https://doi.org/10.1007/BF01111839
  15. T. Saito, Hyponormal operators and related topics, Lecture Note in Math. 247, Springer, Berlin, 1972
  16. N. C. Shah and I. H. Sheth, On paranormal operators, Math. Japon. 19 (1974), 79-81
  17. K. Tanahashi, On log-hyponormal operators, Integral Equations Operator Theory 34 (1999), no. 3, 364-372 https://doi.org/10.1007/BF01300584
  18. K. Tanahashi, Putnam's inequality for log-hyponormal operators, Integral Equations Operator Theory 48 (2004), no. 1, 103-114 https://doi.org/10.1007/s00020-999-1172-5
  19. D. Xia, Spectral Theory of hyponormal operators, Operator Theory : Advances and Applications 10, Birkhauser Verlag, Boston, 1983
  20. T. Yamazaki, M. Ito, and T. Furuta, A subclasses of paranormal including class of log-hyponormal and several related classes, Surikaisekikenkyusho Kokyuroku No. 1080 (1999), 41-55

Cited by

  1. Quasinormality and Fuglede-Putnam theorem for (s, p)-w-hyponormal operators vol.65, pp.8, 2017, https://doi.org/10.1080/03081087.2016.1248346