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REMARKS ON M-IDEALS OF COMPACT OPERATORS

CHONG-MAN CHO

1. Introduction

A closed subspace J of a Banach space X is called an M-ideal in X
if the annihilator J+ of J is an L-summand of X*. That is, there exists
a closed subspace J' of X* such that X* = J4 & J' and ||p+¢|| =
lipll + |l¢!| whenever p € J* and ¢ € J'. Ever since Alfsen and Effros [1]
introduced the notion of an M-ideal in a Banach space, many authors
have studied the problem determining those Banach spaces X and Y
for which K(X.Y), the space of compact linear operators from X to
Y, 1s an M-ideal in L(X,Y), the space of bounded linear operators
from X to YV [3,7,8,9,11, 14, 15, 16]. It is weil known that if X is
a Hilbert space, ¢, (1 < p < oc) or ¢g, then K(X)(=RA(X.X)) is
an M-ideal in L(X)(=L(X, X)) [4, 7, 15] while A'(¢y) and K (£, ) are
not M-ideals in the corresponding space of operators [15]. Also several
authors proved that K(¢,,¢;) for 1 < p < ¢ < oc is an M-ideal in
L(€,,¢4) [6,11, 14] and K(X,co) is an M-ideal in L(X,¢y) for cvery
Banach space X [14, 15].

Kalton [8] introduced the notions of property (M) and property (M*),
and proved that if X is a separable Banach space then A (X)) 1s an M-
ideal in L(X') if and only if X has either property t M) or property (M*).
and there exists a sequence {K,} ., in K(X) such that (1) A, — Ix
(the identity map on X)) strongly, (ii) KX — Ix« strongly and (iii)
lIx —2K,|| —» 1. Property (M*) is a dual notior of property (M).
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Later Kalton and Werner [9] extended the notion of property (M)
to a single operator from a Banach space X to a Banach space Y and
established a necessary and sufficient condition for (X, Y") to be an M-
ideal in L(X,Y"). More specifically, they proved the following theorem.

THEOREM A [9]. Suppose X is a Banach space sich that there exists
a sequence {Kp},~, in K(X) satisfving
(i) K, — Ix strongly,
(i) K} — Ix« strongly,
(ii1) |[Ix — 2K,|| — 1.
If'Y is a Banach space, then K(X,Y') is an M-ideal in L(X,Y") if and
only if every T € L(X,Y) with ||T|| < 1 has the property (M).

Using this theorem Kalton and Werner [9] proved that if 2 < p < o0
then K({,, L,[0,1])is an M-ideal in L(£,, L,[0,1]). They also mentioned
about the validity of a property (M*) version of Theorem A, but did
not pursue its application.

In this paper, using Theorem A we will draw a result which comprises
that of Kalton and Werner. In Theorem 3.2 we will prove that if 2 < p <
g < oo, q# 2, and X is a closed subspace of (Y X,), (dimX, < >0)
which has the compact approximation property then K (X, L,[0,1]) is
an M-ideal in L(X, L;[0,1]). We will also formulate (M*) version of
Theorem A. Unexpectedly we will see that we don’t need the condition
“K* — Iy- strongly” in Theorem 3.3. As an application we will prove

n

that K (L,[0,1],¢1) is not an M-ideal in L(L,[0,1}, ;) in Theorem 3.4.

2. Preliminaries

If X is a Banach space, Bx will denote the closed unit ball of X and
Iy will denote the identity map on X. A Banach space X is said to
have the compact approximation property if the identity operator on
X is in the closure of K(X) with respect to the topology of uniform
convergence on compact sets in X.

A Banach space X is said to have a finite-dimensional Schauder
decomposition {X,} -, if every ¢ € X can be uniquely written as
T = Y >, T, where t, € X, and each X, is a finite-dimensional
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subspace of X. For each n the partial sum projection P, on X is
defined by P,(}" z,;) = Y0, x;. where z; € X;. It is easy to see that
sup,, ||P.]| < co. A Banach space X with a finite- dimensional Schauder
decomposition { X}~ is called the £,-sum of { X} - and is written
X=X it |2 zall =32 H:rnllp)l/p for every z = Yz, € X with
T, € X,.

By an operator between Banach spaces we will always mean a contin-
uous linear operator. According to Kalton and Werner [9] an operator
T with ||T|| <1 from a Banach space X to a Banach space ¥ is said to
have property (M) if

limsup |ly + Tz,|| < limsup ||z -- 7,
n—oo

n—oc

for all + € X, y € Y with ||y|| < ||z|| and all weakly null sequences
{zn},, in X.

Dualizing property (M), let us say that a contractive operator T :
X — Y has property (M*) if

limsup |[z* + Ty || < limsup ||y* + ;|

T~ OC n—oo

for all z* € X*, y* € Y* with ||z*|| < [|y*|| and all weak* null sequence
{yr}o,in Y™

The following lemma is a property (M*) version of Lemma 2.2 of [9].
LemMMA 2.1, If T : X — Y is a contractive operator with property
(M*), and {z}}.2, € X* and {y}}.o, C Y* are relatively compact

n=1
sequences with ||zk| < ||yX|| for all n, then

limsup ||z}, + 7™z || < limsup ||y, + 25|

n—oo n—oo

for all weak* null sequence {z3},_, in Y'*.

Proof. The proof is straight forward (or see the proof of Lemma 2.2
of [9]).
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3. M-ideals

The key fact in the proof of Theorem 3.2 is the following.

PROPOSITION 3.1. Suppose X is a reflexive subspace of a Banach
space Z with the property that there exists a sequence {P,} >~ | in K(Z)
such that limsup, . _|[Iz —2P,|| < 1 and P, — Iz strongly. If X
has the compact approximation property, then there exists a sequence
{Kn},—, in By (x) satisfving

(1) K, — Ix strongly,
(1) K} — Ix- strongly,
(1) |[[Ix —2K,|| — 1.

Proof. From the Cho-Johnson proof of Proposition 3 of [3] we can
find a sequence {K,}, , in By (x) satisfying (i), (ii) and

limsup ||[{x — 2R ,|| < 1.

T OC

Now fix z € X with ||z|| = 1. Since K,z — @ and |[Ix — 2K ,|| >
llr — 2K ,z||, we have

liminf |[Ix — 2K,|| > ||z| = 1.

Therefore, ||[Ix — 2K ,| — 1.

THEOREM 3.2. Suppose2 <p<g<oc and ¢# 2. If X is a closed
subspace of () X,), (dimX, < oo) which has the compact approxi-
mation property. then K(X, L,[0,1]) is an M-ideal :n L(.X, L,[0.1]).

Proof. By Proposition 3.1, there exists a sequence {K,} -, in K(X)
satisfying condition (i), (ii) and (iii) in Theorem A. Therefore. it suffices
to prove that every contraction in L(X, L,[0,1]) has property (M).

Let T : X — L,[0,1] be an operator with ||T}| < 1. Let + € X,
y € L,[0,1] with |y|| < ||z|| and let {x,} 2, be a weakly null sequence
in X. We need to prove

limsup ||y + Tzp| < lmsup ||z + z,.|.

n—0oC n—o0
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If | Tz,|| — 0, then there is nothing to prove. So we assume that
limsup,,_ . ||[Tz,|| > 0. By passing to subsequences we may assume
that {r,} 7, is equivalent to the unit vector basis {e,} 2, of £, and
{lly + Tx,||}3%, converges. Hence there exists a > 0 such that

N

Zixn

n=1

L’\T

Y ten

n=1

> o

for all choices of signs and every positive integer N. By the Kalton
Werner argument [9, Proposition 2.5], we can prove that {Tz,} -, is
uniformly integrable. Hence we have

limsup ||y + T, = limsup (y]|? + || Tea]|))"?
n-—0c n—00
< limsup ([|2)| 7 + [ ea](*)"/*
< limsup (|J«||” + || Fan')]/p :

Since z, — 0 weakly, limsup,,__ _ llv + 7,/

1/p

= limsup, . (||z||” + ||z.||")"’* and our proof is complete.

REMARKS. 1. Observe that we can replace L, 0.1] by any subspace
Y of L,[0,1] in Theorem 3.2.

2. An M-ideal is a proximinal subspace and herice Theorem 3.2 gives
an answer for ¢ > 2 to the question raised by Bang and Odel [2] asking
whether K (€3, L,[0,1}) is an M-ideal in L(f3, L,[0.1]) if 1 < p < oo.

Alfsen and Effros (1], and Lima [10] characterized an M-ideal in terms
of intersection properties of balls. Lima [10, Theorem 6.17] proved that
a closed subspace J of a Banach space X is an M-:deal in X if and only
if for any xy,x9,23 € By, * € Bx and any ¢ > 0, there exists y € J
such that ||z, + @ —yf| <14 e fori=1,2,3.

Now we will formulate a property (M*) version of Theorem A. The
following proof of Theorem 3.3 is a minor modification of the Kalton-
Werner proof of Theorem A [9, Theorem 2.3]. Since we don’t need the
condition “AY — Iy« strongly” in Theorem 3.3, 't is applicable in the
case that Y* is nonseparable.
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THEOREM 3.3. Suppose Y is a Banach space such that there exists
a sequence {K,}>° | in K(Y) satisfying
(i) K, — Iy strongly,
(i1) |[Iy — 2K, — 1.
If X is a Banach space, then K(X,Y) is an M-ideal in L(X,Y) if and
only if every contractive operator T : X — Y has property (M*).

Proof. Suppose that every contractive operator in L{X, }") has prop-
erty (M*) Let S; € BK(X,Y) {(r=1,2 3) T ¢ Bl(\ Y) and ¢ > 0 be
given. We will show that there exists § € A(X,Y') such that

1S;+T—-5||<1+¢ for =123
Choose m so that ||S; — K S|l < § (i =1,2,3) and |[Iy — 2K,,|| <
1+ £. Choose a sequence {yx},~, in Y* such tha: [[y}|| = 1 for all n
and

limsup |KnS1+ T — K, T|| = limsup ||STK;,, + T = T*K}||

n—od T OO

= limsup || ST K yn + T*(Iy+ — K}yl -

n—oxo

Since {(Iy- — K})y%}o., is a weak* null sequence in Y*, and
{Kryr}or, C Y* and {StR Ly}, © X* are relatively compact

n=1
sequecnes with ||STA (> yrl| for all n, by Lemma 2.1 we have

mUnll <

limsup ||STR,yn + T (Ly+ — K} )yl

n—oo

< limsup [|Kyn + Iy — K} )yl

n—oo

<limsup ||, + 1
< My — 2Kl [6,p-300]
£
<1+ 3
Combining above inequalities, we have

limsup ||$1+ 7T — K, T|| <1+e¢.

n—o00
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Thus lim; _, o H51 + T — Ky, TH < 1+¢ for some subsequence {Knj }jo:l
of {Kn}io:l

Repeating the same argument using { K, };1 in place of {K,} .,
we have the same type of inequalities for S;, S: and for some subse-
quence of {K,, };x:l Therefore, K(X,Y ) is an M-ideal in L(X,Y).

Conversely, suppose K(X,Y) is an M-ideal in L(X.Y) and T €
L(X,Y) is a contraction. We will show that T has property (M*).

Let z* € X*, y* € Y* with [z*|| < |ly*|| £ 1 and {y3},, a
weak* null sequence in Y*. Let ¢ > 0 be given. Choose y € YV
with |ly]] = 1 such that 1 —¢ < y*(y) < 1. Let S = 2* @ y. Then
[ISI| = |lz*|| <1 and S* = § @ z*, where § is the natural embeddlng of
y €Y mto Y**.

Since S*(y*) = y*(y)z*, ||S*y* — z*|| < ¢ and

limsup ||z* 4+ T*yr|l < e +limsup ||S*y* + Ty .
Choose U € K(X,Y ) such that |(T* - U*)y*|| <eand |[S+T -U| <
1+ ¢ [17, Theorem 3.1, Remark].
Since S is compact and {y}} -, is a uniformly bounded weak* null
sequence, yx — 0 uniformly on S(By) and hence ||[S*y%|| — 0. Simi-

larly, [[U*y2]| — 0. Thus
limsup |[S*y™ + Ty, || = limsup ||S*(y* 4+ y;) +(T" = U™ )y, ||
< e+ limsup [|[(S*+T* = U™)(y" + y3)ll

<e+(1+e)limsup |u* +y7) .

Since ¢ > 0 is arbitrary, we have

limsup, . [l2" + T*y;|| < limsup, . {ly* +y7ll.
THEOREM 3.4. K(L4[0,1],¢,) is not an M-ideal in L(L[0,1],¢;).
Proof. In view of Theorem 3.3, it suffices to show that there is a

contraction T : L;[0,1] — ¢; which does not have property (M*).
Partition [0,1) into {I,}.,, where

ol _ 1 27 ]
2n—l on
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For f € L,[0,1] we write f = 3> | fX;, and define
Tf =53, (m(I fI )Xln, where m is the Lebesgue measure on

[0,1] and X, is the characteristic function of I,. Then T is a norm one
projection on L,[0,1] and the map ;ﬁmk’jn — €, gives an isometry

between the range of T and ¢,, where {e,}"., is the unit vector basis
of f] .

We claim that T dose not have property (M*). Let {Pn} , be the
unit vector basis of ¢y canonically embedded in [ . Put z* = \[0 1] €
L,[0,1} and y* = ¢, € ;. Since {é,}.—,isa Wca,k* null sequence and
fT*€é,]| - 0, we have

limsup [[z* 4+ T*(8,€,)| > limsup ||y* -~ 6,.€,]

n-—o0 n-—00

for appropriate choices of # = 4+1. Hence T does not have property
(M*).
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