REMARKS ON M-IDEALS OF COMPACT OPERATORS

CHONG-MAN CHO

1. Introduction

A closed subspace J of a Banach space X is called an M-ideal in X if the annihilator J^{\perp} of J is an L-summand of X^* . That is, there exists a closed subspace J' of X^* such that $X^* = J^{\perp} \oplus J'$ and $\|p+q\| = \|p\| + \|q\|$ whenever $p \in J^{\perp}$ and $q \in J'$. Ever since Alfsen and Effros [1] introduced the notion of an M-ideal in a Banach space, many authors have studied the problem determining those Banach spaces X and Y for which K(X,Y), the space of compact linear operators from X to Y, is an M-ideal in L(X,Y), the space of bounded linear operators from X to Y [3, 7, 8, 9, 11, 14, 15, 16]. It is well known that if X is a Hilbert space, ℓ_p $(1 or <math>c_0$, then K(X)(=K(X,X)) is an M-ideal in L(X)(=L(X,X)) [4, 7, 15] while $K(\ell_1)$ and $K(\ell_{\infty})$ are not M-ideals in the corresponding space of operators [15]. Also several authors proved that $K(\ell_p,\ell_q)$ for $1 is an M-ideal in <math>L(X,c_0)$ for every Banach space X [14, 15].

Kalton [8] introduced the notions of property (M) and property (M^*) , and proved that if X is a separable Banach space then K(X) is an Mideal in L(X) if and only if X has either property M or property M^* , and there exists a sequence $\{K_n\}_{n=1}^{\infty}$ in K(X) such that (i) $K_n \to I_X$ (the identity map on X) strongly, (ii) $K_n^* \to I_{X^*}$ strongly and (iii) $\|I_X - 2K_n\| \to 1$. Property M^* is a dual notion of property M.

Received December 28, 1995.

¹⁹⁹¹ AMS Subject Classification: 46A32, 41A50.

Key words and phrases: compact approximation property, compact operator, M-ideal, operator.

This research is supported by Korean Research Foundation, the Ministry of Education, 1993.

Later Kalton and Werner [9] extended the notion of property (M) to a single operator from a Banach space X to a Banach space Y and established a necessary and sufficient condition for K(X,Y) to be an Mideal in L(X,Y). More specifically, they proved the following theorem.

THEOREM A [9]. Suppose X is a Banach space such that there exists a sequence $\{K_n\}_{n=1}^{\infty}$ in K(X) satisfying

- (i) $K_n \to I_X$ strongly,
- (ii) $K_n^* \to I_{X^*}$ strongly,
- (iii) $||I_X 2K_n|| \to 1$.

If Y is a Banach space, then K(X,Y) is an M-ideal in L(X,Y) if and only if every $T \in L(X,Y)$ with $||T|| \le 1$ has the property (M).

Using this theorem Kalton and Werner [9] proved that if $2 \le p < \infty$ then $K(\ell_p, L_p[0, 1])$ is an M-ideal in $L(\ell_p, L_p[0, 1])$. They also mentioned about the validity of a property (M^*) version of Theorem A, but did not pursue its application.

In this paper, using Theorem A we will draw a result which comprises that of Kalton and Werner. In Theorem 3.2 we will prove that if $2 \le p \le q < \infty$, $q \ne 2$, and X is a closed subspace of $(\sum X_n)_p$ (dim $X_n < \infty$) which has the compact approximation property then $K(X, L_q[0,1])$ is an M-ideal in $L(X, L_q[0,1])$. We will also formulate (M^*) version of Theorem A. Unexpectedly we will see that we don't need the condition " $K_n^* \to I_{Y^*}$ strongly" in Theorem 3.3. As an application we will prove that $K(L_1[0,1],\ell_1)$ is not an M-ideal in $L(L_1[0,1],\ell_1)$ in Theorem 3.4.

2. Preliminaries

If X is a Banach space, B_X will denote the closed unit ball of X and I_X will denote the identity map on X. A Banach space X is said to have the compact approximation property if the identity operator on X is in the closure of K(X) with respect to the topology of uniform convergence on compact sets in X.

A Banach space X is said to have a finite-dimensional Schauder decomposition $\{X_n\}_{n=1}^{\infty}$ if every $x \in X$ can be uniquely written as $x = \sum_{n=1}^{\infty} x_n$, where $x_n \in X_n$ and each X_n is a finite-dimensional

subspace of X. For each n the partial sum projection P_n on X is defined by $P_n(\sum_{i=1}^{\infty} x_i) = \sum_{i=1}^{n} x_i$, where $x_i \in X_i$. It is easy to see that $\sup_n \|P_n\| < \infty$. A Banach space X with a finite-dimensional Schauder decomposition $\{X_n\}_{n=1}^{\infty}$ is called the ℓ_p -sum of $\{X_n\}_{n=1}^{\infty}$ and is written $X = (\sum X_n)_p$ if $\|\sum x_n\| = (\sum \|x_n\|^p)^{1/p}$ for every $x = \sum x_n \in X$ with $x_n \in X_n$.

By an operator between Banach spaces we will always mean a continuous linear operator. According to Kalton and Werner [9] an operator T with $||T|| \le 1$ from a Banach space X to a Banach space Y is said to have property (M) if

$$\lim \sup_{n \to \infty} \|y + Tx_n\| \le \lim \sup_{n \to \infty} \|x - x_n\|$$

for all $x \in X$, $y \in Y$ with $||y|| \le ||x||$ and all weakly null sequences $\{x_n\}_{n=1}^{\infty}$ in X.

Dualizing property (M), let us say that a contractive operator $T: X \to Y$ has property (M*) if

$$\limsup_{n \to \infty} \|x^* + T^*y_n^*\| \le \limsup_{n \to \infty} \|y^* + y_n^*\|$$

for all $x^* \in X^*$, $y^* \in Y^*$ with $||x^*|| \le ||y^*||$ and all weak* null sequence $\{y_n^*\}_{n=1}^{\infty}$ in Y^* .

The following lemma is a property (M*) version of Lemma 2.2 of [9].

LEMMA 2.1. If $T: X \to Y$ is a contractive operator with property (M^*) , and $\{x_n^*\}_{n=1}^{\infty} \subseteq X^*$ and $\{y_n^*\}_{n=1}^{\infty} \subseteq Y^*$ are relatively compact sequences with $||x_n^*|| \le ||y_n^*||$ for all n, then

$$\limsup_{n \to \infty} \|x_n^* + T^* z_n^*\| \le \limsup_{n \to \infty} \|y_n^* + z_n^*\|$$

for all weak* null sequence $\{z_n^*\}_{n=1}^{\infty}$ in Y^* .

Proof. The proof is straight forward (or see the proof of Lemma 2.2 of [9]).

3. M-ideals

The key fact in the proof of Theorem 3.2 is the following.

PROPOSITION 3.1. Suppose X is a reflexive subspace of a Banach space Z with the property that there exists a sequence $\{P_n\}_{n=1}^{\infty}$ in K(Z) such that $\limsup_{n\to\infty} ||I_Z - 2P_n|| \le 1$ and $P_n \to I_Z$ strongly. If X has the compact approximation property, then there exists a sequence $\{K_n\}_{n=1}^{\infty}$ in $B_{K(X)}$ satisfying

- (i) $K_n \to I_X$ strongly,
- (ii) $K_n^* \to I_{X^*}$ strongly,
- (iii) $||I_X 2K_n|| \to 1$.

Proof. From the Cho-Johnson proof of Proposition 3 of [3] we can find a sequence $\{K_n\}_{n=1}^{\infty}$ in $B_{K(X)}$ satisfying (i), (ii) and

$$\limsup_{n \to \infty} \|I_X - 2K_n\| \le 1.$$

Now fix $x \in X$ with ||x|| = 1. Since $K_n x \to x$ and $||I_X - 2K_n|| \ge ||x - 2K_n x||$, we have

$$\liminf_{n\to\infty} ||I_X - 2K_n|| \ge ||x|| = 1.$$

Therefore, $||I_X - 2K_n|| \to 1$.

THEOREM 3.2. Suppose $2 \le p \le q < \infty$ and $q \ne 2$. If X is a closed subspace of $(\sum X_n)_p$ (dim $X_n < \infty$) which has the compact approximation property, then $K(X, L_q[0,1])$ is an M-ideal in $L(X, L_q[0,1])$.

Proof. By Proposition 3.1, there exists a sequence $\{K_n\}_{n=1}^{\infty}$ in K(X) satisfying condition (i), (ii) and (iii) in Theorem A. Therefore, it suffices to prove that every contraction in $L(X, L_q[0,1])$ has property (M).

Let $T: X \to L_q[0,1]$ be an operator with $||T|| \le 1$. Let $x \in X$, $y \in L_q[0,1]$ with $||y|| \le ||x||$ and let $\{x_n\}_{n=1}^{\infty}$ be a weakly null sequence in X. We need to prove

$$\limsup_{n\to\infty}\|y+Tx_n\|\leq \limsup_{n\to\infty}\|x+x_n\|\,.$$

If $||Tx_n|| \to 0$, then there is nothing to prove. So we assume that $\limsup_{n\to\infty} ||Tx_n|| > 0$. By passing to subsequences we may assume that $\{x_n\}_{n=1}^{\infty}$ is equivalent to the unit vector basis $\{e_n\}_{n=1}^{\infty}$ of ℓ_p and $\{||y+Tx_n||\}_{n=1}^{\infty}$ converges. Hence there exists $\alpha > 0$ such that

$$\left\| \sum_{n=1}^{N} \pm e_n \right\| \ge \alpha \left\| \sum_{n=1}^{N} \pm x_n \right\|$$

for all choices of signs and every positive integer N. By the Kalton-Werner argument [9, Proposition 2.5], we can prove that $\{Tx_n\}_{n=1}^{\infty}$ is uniformly integrable. Hence we have

$$\limsup_{n \to \infty} \|y + Tx_n\| = \limsup_{n \to \infty} (\|y\|^q + \|Tx_n\|^q)^{1/q}$$

$$\leq \limsup_{n \to \infty} (\|x\|^q + \|x_n\|^q)^{1/q}$$

$$\leq \limsup_{n \to \infty} (\|x\|^p + \|x_n\|^p)^{1/p}.$$

Since $x_n \to 0$ weakly, $\limsup_{n \to \infty} \|x + x_n\|^p$ = $\limsup_{n \to \infty} (\|x\|^p + \|x_n\|^p)^{1/p}$ and our proof is complete.

REMARKS. 1. Observe that we can replace $L_q[0,1]$ by any subspace Y of $L_q[0,1]$ in Theorem 3.2.

2. An M-ideal is a proximinal subspace and hence Theorem 3.2 gives an answer for q > 2 to the question raised by Bang and Odel [2] asking whether $K(\ell_2, L_p[0, 1])$ is an M-ideal in $L(\ell_2, L_p[0, 1])$ if 1 .

Alfsen and Effros [1], and Lima [10] characterized an M-ideal in terms of intersection properties of balls. Lima [10, Theorem 6.17] proved that a closed subspace J of a Banach space X is an M-ideal in X if and only if for any $x_1, x_2, x_3 \in B_J$, $x \in B_X$ and any $\varepsilon > 0$, there exists $y \in J$ such that $||x_i + x - y|| < 1 + \varepsilon$ for i = 1, 2, 3.

Now we will formulate a property (M^*) version of Theorem A. The following proof of Theorem 3.3 is a minor modification of the Kalton-Werner proof of Theorem A [9, Theorem 2.3]. Since we don't need the condition " $K_n^* \to I_{Y^*}$ strongly" in Theorem 3.3, it is applicable in the case that Y^* is nonseparable.

THEOREM 3.3. Suppose Y is a Banach space such that there exists a sequence $\{K_n\}_{n=1}^{\infty}$ in K(Y) satisfying

- (i) $K_n \to I_Y$ strongly,
- (ii) $||I_Y 2K_n|| \to 1$.

If X is a Banach space, then K(X,Y) is an M-ideal in L(X,Y) if and only if every contractive operator $T: X \to Y$ has property (M^*) .

Proof. Suppose that every contractive operator in L(X,Y) has property (M^*) . Let $S_i \in B_{K(X,Y)}$ $(i=1,2,3), T \in B_{L(X,Y)}$ and $\varepsilon > 0$ be given. We will show that there exists $S \in K(X,Y)$ such that

$$||S_i + T - S|| \le 1 + \varepsilon$$
 for $i = 1, 2, 3$.

Choose m so that $||S_i - K_m S_i|| < \frac{\varepsilon}{2}$ (i = 1, 2, 3) and $||I_Y - 2K_m|| < 1 + \frac{\varepsilon}{2}$. Choose a sequence $\{y_n^*\}_{n=1}^{\infty}$ in Y^* such that $||y_n^*|| = 1$ for all n and

$$\lim \sup_{n \to \infty} \|K_m S_1 + T - K_n T\| = \lim \sup_{n \to \infty} \|S_1^* K_m^* + T^* - T^* K_n^*\|$$

$$= \lim \sup_{n \to \infty} \|S_1^* K_m^* y_n^* + T^* (I_{Y^*} - K_n^*) y_n^*\|.$$

Since $\{(I_{Y^*} - K_n^*)y_n^*\}_{n=1}^{\infty}$ is a weak* null sequence in Y^* , and $\{K_m^*y_n^*\}_{n=1}^{\infty} \subseteq Y^*$ and $\{S_1^*K_m^*y_n^*\}_{n=1}^{\infty} \subseteq X^*$ are relatively compact sequences with $\|S_1^*K_m^*y_n^*\| \le \|K_m^*y_n^*\|$ for all n, by Lemma 2.1 we have

$$\limsup_{n \to \infty} \|S_{1}^{*}K_{m}^{*}y_{n}^{*} + T^{*}(I_{Y^{*}} - K_{n}^{*})y_{n}^{*}\|$$

$$\leq \limsup_{n \to \infty} \|K_{m}^{*}y_{n}^{*} + (I_{Y^{*}} - K_{n}^{*})y_{n}^{*}\|$$

$$\leq \limsup_{n \to \infty} \|K_{n} + I_{Y} - K_{n}\|$$

$$\leq \|I_{Y} - 2K_{m}\| \quad [6, p.300]$$

$$< 1 + \frac{\varepsilon}{2}.$$

Combining above inequalities, we have

$$\limsup_{n\to\infty} ||S_1 + T - K_n T|| < 1 + \varepsilon.$$

Thus $\lim_{j\to\infty} \|S_1 + T - K_{n_j}T\| < 1+\varepsilon$ for some subsequence $\{K_{n_j}\}_{j=1}^{\infty}$ of $\{K_n\}_{n=1}^{\infty}$.

Repeating the same argument using $\{K_{n_j}\}_{j=1}^{\infty}$ in place of $\{K_n\}_{n=1}^{\infty}$, we have the same type of inequalities for S_2 , S_3 and for some subsequence of $\{K_{n_j}\}_{j=1}^{\infty}$. Therefore, K(X,Y) is an M-ideal in L(X,Y).

Conversely, suppose K(X,Y) is an M-ideal in L(X,Y) and $T \in$ L(X,Y) is a contraction. We will show that T has property (M^*) .

Let $x^* \in X^*$, $y^* \in Y^*$ with $||x^*|| \le ||y^*|| \le 1$ and $\{y_n^*\}_{n=1}^{\infty}$ a weak* null sequence in Y*. Let $\varepsilon > 0$ be given. Choose $y \in Y$ with ||y|| = 1 such that $1 - \varepsilon \le y^*(y) \le 1$. Let $S = x^* \otimes y$. Then $||S|| = ||x^*|| \le 1$ and $S^* = \hat{y} \otimes x^*$, where \hat{y} is the natural embedding of $y \in Y$ into Y^{**} .

Since
$$S^*(y^*) = y^*(y)x^*$$
, $||S^*y^* - x^*|| \le \varepsilon$ and

$$\limsup_{n \to \infty} \|x^* + T^* y_n^*\| \le \varepsilon + \limsup_{n \to \infty} \|S^* y^* + T^* y_n^*\|.$$

Choose $U \in K(X,Y)$ such that $||(T^* - U^*)y^*|| < \varepsilon$ and $||S + T - U|| < \varepsilon$ $1 + \varepsilon$ [17, Theorem 3.1, Remark].

Since S is compact and $\{y_n^*\}_{n=1}^{\infty}$ is a uniformly bounded weak* null sequence, $y_n^* \to 0$ uniformly on $S(B_X)$ and hence $||S^*y_n^*|| \to 0$. Similarly, $||U^*y_n^*|| \to 0$. Thus

$$\begin{split} \limsup_{n \to \infty} \|S^*y^* + T^*y_n^*\| &= \limsup_{n \to \infty} \|S^*(y^* + y_n^*) + (T^* - U^*)y_n^*\| \\ &\leq \varepsilon + \limsup_{n \to \infty} \|(S^* + T^* - U^*)(y^* + y_n^*)\| \\ &\leq \varepsilon + (1 + \varepsilon) \limsup_{n \to \infty} \|y^* + y_n^*\| \,. \end{split}$$

Since $\varepsilon > 0$ is arbitrary, we have $\limsup_{n\to\infty}\|x^*+T^*y_n^*\|\leq \limsup_{n\to\infty}\|y^*+y_n^*\|.$

THEOREM 3.4. $K(L_1[0,1], \ell_1)$ is not an M-ideal in $L(L_1[0,1], \ell_1)$.

Proof. In view of Theorem 3.3, it suffices to show that there is a contraction $T: L_1[0,1] \to \ell_1$ which does not have property (M^*) . Partition [0,1) into $\{I_n\}_{n=1}^{\infty}$, where

$$I_n = \left[\frac{2^{n-1}-1}{2^{n-1}}, \frac{2^n-1}{2^n}\right) \quad n \ge 1.$$

For $f \in L_1[0,1]$ we write $f = \sum_{n=1}^{\infty} f \chi_{I_n}$ and define $Tf = \sum_{n=1}^{\infty} \left(\frac{1}{m(I_n)} \int_{I_n} f\right) \chi_{I_n}$, where m is the Lebesgue measure on [0,1] and χ_{I_n} is the characteristic function of I_n . Then T is a norm one projection on $L_1[0,1]$ and the map $\frac{1}{m(I_n)} \chi_{I_n} \to e_n$ gives an isometry between the range of T and ℓ_1 , where $\{e_n\}_{n=1}^{\infty}$ is the unit vector basis

We claim that T dose not have property (M^*) . Let $\{\hat{e}_n\}_{n=1}^{\infty}$ be the unit vector basis of c_0 canonically embedded in ℓ_{∞} . Put $x^* = \chi_{[0,1]} \in L_1[0,1]$ and $y^* = \hat{e}_1 \in \ell_1$. Since $\{\hat{e}_n\}_{n=1}^{\infty}$ is a weak* null sequence and $\|T^*\hat{e}_n\| \to 0$, we have

of ℓ_1 .

$$\limsup_{n \to \infty} ||x^* + T^*(\theta_n \hat{e}_n)|| > \limsup_{n \to \infty} ||y^* - \theta_n \hat{e}_n||$$

for appropriate choices of $\theta = \pm 1$. Hence T does not have property (M^*) .

ACKNOWLEDGEMENT. This work was done while the author was visiting Texas A & M University in 1993-4. It is pleasure to express his gratitude to those people who made this stay possible, especially to Professor W. B. Johnson for his helpful comments.

References

- E. M. Alfsen and E. G. Effros, Structure in real Banach spaces, Ann. of Math. 96 (1972), 98-173.
- H. Bang and E. Odell, On the best compact approximation problem for operators between L_p-spaces, J. Approx. Theory 51 (1987), 274-287.
- 3. C.-M. Cho and W. B. Johnson, A characterization of subspaces X of ℓ_p for which K(X) is an M-ideal in L(X), Proc. Amer. Math. Soc. 93 (1985), 466-470.
- J. Dixmier, Les fonctionnelles linéaires sur l'ensemble des opérateurs bornés d'un espace de Hilbert, Ann. of Math. 51 (1950), 387-408.
- P. Harmand and A. Lima, Banach spaces which are M-ideals in their biduals, Trans. Amer. Math. Soc. 283 (1984), 253-264.
- P. Harmand, D. Werner and W. Werner, M-ideals in Banuch Spaces and Banach Algebras, Lecture Notes in Math. 1547, Springer, Berlin-Heidelberg-New York, 1993.
- J. Hennefeld, A decomposition for B(X)* and unique Hahn-Banach extensions, Pacific. J. Math. 46 (1973), 197-199.
- 8. N. J. Kalton, M-ideals of compact operators, Illinois J. Math. 37 (1993), 147-169.

Remarks on M-ideals of compact operators

- 9. N. J. Kalton and D. Werner, Property (M), M-ideals and almost isometric structure of Banach spaces, Preprint,.
- 10. A. Lima, Intersection properties of balls and subspace in Banach spaces, Trans. Amer. Math. Soc. 227 (1997), 1-62.
- 11. A. Lima, M-ideals of compact operators in classical Banach spaces, Math. Scand. 44 (1979), 207-217.
- J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer, Berlin-Heidelberg-New York, 1977.
- J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer, Berlin-Heidelberg-New York, 1979.
- 14. K. Saatkamp, M-ideals of compact operatros, Math. Z. 158 (1978), 253-263.
- R. R. Smith and J. D. Ward, M-ideal structure in Banach algebras, J. Func. Anal. 27 (1978), 337-349.
- D. Werner, Remarks on M-ideals of compact operators, Quart. J. Math. Oxford
 41 (1990), 501-507.
- 17. D. Werner, M-ideals and the 'basic inequality', J. Approx. Theory 76 (1994), 21-30.

DEPARTMENT OF MATHEMATICS, HANYANG UNIVERSITY, SEOUL 133-791, KOREA