Browse > Article
http://dx.doi.org/10.4134/JKMS.2007.44.1.025

ON A CLASS OF OPERATORS RELATED TO PARANORMAL OPERATORS  

Lee, Mi-Young (Department of Mathematics College of Natural Science Kyungpook National University)
Lee, Sang-Hun (Department of Mathematics College of Natural Science Kyungpook National University)
Publication Information
Journal of the Korean Mathematical Society / v.44, no.1, 2007 , pp. 25-34 More about this Journal
Abstract
An operator $T{\in}L(H)$ is said to be p-paranormal if $$\parallel{\mid}T\mid^pU{\mid}T\mid^px{\parallel}x\parallel\geq\parallel{\mid}T\mid^px\parallel^2$$ for all $x{\in}H$ and p > 0, where $T=U{\mid}T\mid$ is the polar decomposition of T. It is easy that every 1-paranormal operator is paranormal, and every p-paranormal operator is paranormal for 0 < p < 1. In this note, we discuss some properties for p-paranormal operators.
Keywords
paranormal; p-paranormal; polar decomposition;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 T. Furuta, Invitation to linear operators, Taylor & Francis, Ltd., London, 2001
2 N. C. Shah and I. H. Sheth, On paranormal operators, Math. Japon. 19 (1974), 79-81
3 A. Aluthge, On p-hyponormal operators for 0 < p < 1, Integral Equations Operator Theory 13 (1990), no. 3, 307-315   DOI
4 A. Aluthge and D.Wang, w-Hyponormal operators, Integral Equations Operator Theory 36 (2000), no. 1, 1-10   DOI
5 A. Aluthge and D.Wang, An operators inequality which implies paranormality, Math. Inequal. Appl. 2 (1999), no. 1, 113-119
6 M. Fujii, C. Himeji, and A. Matsumoto, Theorems of Ando and Saito for p-hyponormal operators, Math. Japon. 39 (1994), no. 3, 595-598
7 M. Fujii, S. Izumino, and R. Nakamoto, Classes of operators determined by the Heinz¡ - Kato - Furuta inequality and the Holder-McCarthy inequality, Nihonkai Math. J. 5 (1994), no. 1, 61-67
8 M. Fujii, D. Jung, S.-H. Lee, M.-Y. Lee, and R. Nakamoto, Some classses of operators related to paranormal and log-hyponormal operators, Math. Japon. 51 (2000), no. 3, 395-402
9 T. Furuta, On the class of paranormal operators, Proc. Japan Acad. 43 (1967), 594-598   DOI
10 T. Furuta, On the polar decomposition of an operator, Acta Sci. Math. (Szeged) 46 (1983), no. 1-4, 261-268
11 P. R. Halmos, A Hilbert Space Problem Book, D. Van Norstand Co., Inc., Princeton, N. J.-Toronto, 1967
12 G. K. Pederson, Analysis Now, Graduate Texts in Mathematics, 118, 1989
13 C. R. Putnam, An inequality for the area of hyponormal spectra, Math. Z. 116 (1970), 323-330   DOI
14 T. Saito, Hyponormal operators and related topics, Lecture Note in Math. 247, Springer, Berlin, 1972
15 K. Tanahashi, On log-hyponormal operators, Integral Equations Operator Theory 34 (1999), no. 3, 364-372   DOI
16 K. Tanahashi, Putnam's inequality for log-hyponormal operators, Integral Equations Operator Theory 48 (2004), no. 1, 103-114   DOI
17 D. Xia, Spectral Theory of hyponormal operators, Operator Theory : Advances and Applications 10, Birkhauser Verlag, Boston, 1983
18 T. Ando, Operators with a norm condition, Acta Sci. Math. (Szeged) 133 (1972), 169-178
19 M. Cho and M. Itoh, Putnam's inequality for p-hyponormal operators, Proc. Amer. Math. Soc. l23 (1995), no. 8, 2435-2440   DOI   ScienceOn
20 T. Yamazaki, M. Ito, and T. Furuta, A subclasses of paranormal including class of log-hyponormal and several related classes, Surikaisekikenkyusho Kokyuroku No. 1080 (1999), 41-55