Comm. Korean Math. Soc. 11 (1996), No. 3, pp. 681-694

ON THE ITERATION OF
HOLOMORPHIC MAPPINGS IN C?

OH-NaMm Kwon

ABSTRACT. Let F be a germ of analytic transformation from (C?, O) to
(C2?, O). Let a, b denote the eigenvalues of DF(0). O is called a semi-
attractive fixed point if ja| =1, 0 < [b] < 1 (or b= 1, 0 < jaj < 1). O
is called a super-attractive fixed point if a = 0, b = 0. We discuss such
a mapping from the point of view of dynamical systems.

1. Introduction

We will consider a germ of analytic transformation F from (C?, O)
to (C?, O), i.e., a holomorphic map defined in a neighborhood of the
origin in C? which leaves the origin O = (0,0) of C? fixed. Let a, b
denote the eigenvalues of DF(0Q). O is called & semi-attractive fixed
point if l[a| =1, 0 < |b) <1 (or b =1, 0 <]a| <1). O is said to be
super-attractive if both of the eigenvalues of the Jacobian matrix at the
origin, DF(O), are zero. We discuss such a mapping from the point of
view of dynamical systems. That is, we will be mainly concerned with
the behaviour of the points in the vicinity of the fixed point O under
the iterates { F, F°2 = FoF, ---, F°* ... }. For the case of semi-
attractive transformations, the dynamics of analogous mapping in one
complex variable may be written with a convergent power series in x as

F(x):$(1+(1117—}—a2x2+...)

and has been studied by Fatou and Leau. Their theory is quite complete
(see [1], [5]). Voronin[8] showed that a map of the form z — z(1 + ¥ +
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-+) is formally conjugate to z +— z(1 + z* + 822*). and the number
B € C is the only invariant in terms of formal power series. Ueda[6,7]
studied the analytic transformation (C*, O) with eigenvalues {1, b} at
O, such that 0 < |b] < 1. He calls a classification {'1,b);}, for k integer,
1 < k < oo, on these transformations. Ueda concentrated his work on
the case (1,b);. In Sections 2 and 3, it will be treated for semi-attractive
transformations of type (a,b); where a? =1, 0 < |b| < 1.

In general, it is not possible to find an analytic change of coordinates
around the super-attractive fixed point which transforms the dynamical
system into a “simple normal form”, for example, (z,y) — (z2.y?). In
Section 4, we describe a class of dynamical systems which can be “nor-
malized” by an analytic change of coordinates intc the simplest normal
form.

2. Reduced forms of semi-attractive transformations

Let us consider a semi-attractive germ F of transformation of (C2, 0)
with eigenvales a, b where a? = 1, 0 < |b| < 1. Let £, 3 E, be the Jordan
decomposition of C? in characteristic subspaces. Here E; is associated
to the eigenvalue a and Ej to the eigenvalue b. There exists an analytic
stable submanifold X attracted by O and tangent to Ej (see [4] for the
proof). Then a coordinate system (z, y) can be chosen in such a way
that X is {z = 0} and the matrix DF(0Q) is triangular. With respect to
this coordinate system, F has the form

(2.1) T = aai(y)z + ax(y)z® + - -
v1 = by + zh(z,y)
where {a;(-)}, j =2, --- and A(-,) are respectively germs of holomor-

phic functions from (C*, 0) to C, (C', 0) to C!, with k(0,0) = 0.

PROPOSITION 2.1. Let F be a semi-attractive germ of transformation
of (C?, O ) with eigenvalues a, bsuch that a® = 1, 0 < |b| < 1. For every
integer m, there exists coordinates (z,y) in which the transformation has
the form

T1=az + az’ 4+ -+ ame™ 4 amyq )™ £
(2.2) { 1 2 +1Y)

y1 = by + zh(z,y)
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as in (2.1), but with a1(y) = 1, as,---an, constants.

ProOF. We start with

z1 = aa (y)z + as(y)z? + - -
Y1 = by + zh(z,y)

and we proceed inductively on m.
1) Reduction to a;(y) = 1. We use the coordinate system

{f/::(y)w {z:}’f/U(Y)

where u(y) is a germ of analytic function from (C!, 0) to C such that
u(0) = 1, to be chosen.
We want

X1 = u(y1)er = u(by + zh(z,y))laa1(y)z + az(y)z® + -]
—u(BY 4 lar(ya- X/u(¥Y) 1 -]

"% aX + O(X?%) = aX + O(X?).

So we have to choose u such that

w(Y') = a; (Y )u(bY)
u(bY) = a1 (bY )u(b?Y)

u(d"Y) = a1 (b"Y Ju(b"T'Y).

This gives for u the unique solution

e ]

u(¥) =[] a1(6"7).

n=0

The infinite product is convergent in a neighborhood of 0 since a;(0) = 1
and [b| < 1.
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2) Suppose that for m > 2, with some coordinates (z,y), F takes the
form

r1=ar+ax’ + -+ amoy 2™ Fan(y)e™ + -
y1 = by + zh(z,y)

with the a;’s constant for 1 < 7 < m — 1. We then use a coordinate
transformation

{X:J:-%v(y)zm {x:X_p(Y)X’"_|_,..
or

Y =y y=Y

with v(y) a holomorphic function in a neighborhood of 0 in C such that
v(0) = 0, v to be chosen. We get

X1 =z +v(y)z]
=az +azz’ + -+ ap-12™ 7 Fap(y)z™ + o(bY)z™ + O(z™ )
=aX —av(Y) X"+ 0, X 4+ Fapm 1 X™ fan(y)X™
Fu(BY)X™ 4 O(X ™).

So we need that

CLU(Y) - ’U(bY) = am(y) - am(()‘)
av(bY) — v(b*Y) = apn(by) — am(0)

av(b™Y) — v(b" 1Y) = a,, (b™y) — iy (0).

The unique solution is then

o0

Z ap—n{am(bny) - am(o)} if p> 0
n=0

v(y) =9 o
Y {am(b™y) ~ am(0)} i p=0.
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The series converges in a neighborhood of 0 since 0 < [b] < 1 and
am(y) —am(0)=0fory=0. O

Let us write again F(z,y) = (z1,y1) as

(2.3) 1 = az(l + apz™ + anyq(y)z™H! +---), an #0
' y1 = by + zh(z,y).

PROPOSITION 2.2. Let F be a semi-attractive germ of transfor-
mation of (C?, O) with eigenvalues a, b such that a? =1, 0 < |b| < 1.
Then the transformation can be written in some coordinates (z,y)

k
(2.4) {ml :am(1+akpxkp+akp+1(y)l‘ PRI

y1 = by + zh(z,y)
for some positive integer k.

PROOF. Assume then that the transformation is written in the form
(2.3). Consider the following holomorphic change of coordinates.

{X:m(l-—am") r=X(1+4aX") +0(X"?)
Y=y y=Y.
We get

X: =21(1 —azxl)
=az(l+ anz™ + anyi(y)z™ ™ +--1)
(1-aa™z™1+ anz”™ + ang1(y)e™t + )"
=aX(14+aX" 14 a, X*(1+aX™)™)
(1-aa" X1+ aX™")™"(1 4+ anX ™1+ aX™)™)) + O(X"1?)
=aX(1+aX™) (14 apnX")(1 - aa™X™)+ O(X"*?)
aX(1+ (a(l —a™) +a,)X™) + O(X™?)
=aX(1+a,X™) +0(X"?).

So we can solve for a if n # kp for some positive integer k. We repeat
this process inductively. 0O
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PROPOSITION 2.3. Let F be a semi-attractive germ of transformation
of (C?,0) of the form (2.4). Then the transformation can be written in
some coordinates (z,y)

r; =az(l+ "+ Cz?FP 4 az,c,,Jr](y):z‘Z’””"H 4+
y1 = by + zh(z,y)

with C a constant.

PROOF. We can suppose that F is in the form by Proposition 2.2

{ zy =ax(l + akpxk” + akpﬂxkl’ﬂ +4)

y1 = by + zh(z,y)

with agp # 0. By alinear change of coordinates one can assume ag, = 1.
Now we use the coordinate transformation

X =az(l+c,z") r=X(1-cp, X"+ 0(X*"))
Y =y o y =Y.

Then we have

X1 =z1(1 + cazl)
=az(l + akp:ckp + )1+ cpa™z™ (1 + akpxkp +-™)
= aX(1 = caX™ + O(X2)(1 + apy XF¥P(1 = ca X™ + O(X )P + . -)
(14 caa X1 = cn X"+ O(X2") (1 4 ap, X P11 — ca X™ 4+ O(X2"))*P
o akp_*_nXkP-Fﬂ(l —en X™ + O(in))kp+" oo™
kp+n—~1

=aX(14+ Y aiX'+ (agpyn — (kp = na™)agpen) XFPHY 4 O(X PRI
i=kp

By taking ¢, = agpyn/arp(kp—na™), n # kp, we have the desired
result. 0O
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3. Existence of attracting domains

In this section, we want to investigate the existence of attracting

domains at O = (0,0) in a neighborhood of O. As the partial derivative

6—F1°"(O)| = 1 in some coordinate system, the family {F°"} cannot
T

converge to O in a neighborhood of 0. So by attracting domains in a
neighborhood of O, we mean open domains D with O € dD such that
rn = F°"(z) converge to O for € D. For the case of a semi-attractive
invertible germ of (C2, O) with a = 1, Ueda [6,7] showed the existence
of attracting domains. The following theorem can be considered as a
generalization of it. We will use a Fatou’s method simplified here by
using the reduced form for F' which gives easily the Abel-Fatou invariant
functions.

THEOREM 3.1. Let F be a semi-attractive germ of transformation of
(C?,0) with engenvalues a, b such that a? = 1, 0 < |b] < 1. There
exists an attracting domain with kp petals for some positive integer k.

PROOF. Suppose that F is in the form by Proposition 2.3.

ry; = az(l+ akpxkp + azkpx“f’ + a2kp+lx2kp+1 +--4)
y = by +zh(z,y)

with axp, # 0. By a linear change of coordinate, we may assume az, =

_k_p_

Let R and p be positive constants to be adjusted later. The half
complex-plane Pp and the subset Vg , of C? is defined by
3.1) Pr={X € C:ReX > R}
' Ve, ={(X,y) € C*: X € Pg, |yl < p}.

1

Let Dg and Ug,, be the images of Pg and Vg, , by the inversion z = X
Then we have
2R’ 2R
Ur, = {(z,y) € C*:z € Dg, ly| < p}.

Dp={z€eC:|z—-
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There are kp branches of 2% in Dg. Let {ARj}O:;jgkp—l be the images
of Dg by these determinations. We will show that, for R big enough
and p small enough, the domains

(32)  Wryi={(z,y)€C*:z e Ap;. lyl<ph 0K j<hp-1
are attracting domains.
Raising the relation
1
1 =az(l — —z* 4 azkpr 2 FP 4 -
kp '

to the power kp, we get

k 1
oy P = a1 - kv 4 azkp?k? 4. )kr

kp
=a*P(1— 2" C2kpf'32kp + Cokprr (y)e2PH 4
yr = by + zh(z,y).

We then restrict (z,y) to a Wg,,; for fixed R, p,j, and we make the
transformations

(z =zt y=y) from Wg,; to Ug,

and 1
(X=~.y=y) fom Un, to Va,

For R big enough and p small enough, the transformation F is defined
in Vg ,. where we get

_ X

1 —zkp + Czkp.Tka -+ C2kp+1(y)1‘2kp+] R

X,

1 1 1 ;
=X(1+ X + “xz + Oy(m))-
Therefore F becomes
1 1
Xi=X+1+ C‘— + Oy(m)

. 1
by + zh(z,y) = by + Oy(——).

RELD

Y1
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1 ,
Here the notation Oy(l-X—F) represents a holomorphic function of (X, y)

—— for some constant K.

in Vg , which is bounded by Xp
Let K be a constant such that

K K
X, —X-1€£ =< =
(3.3) % K
| X[®  R%
in VR,p-
Let R be a sufficiently large number such that
K 1 K
'E'<§ and R’%<(1—bl)p
P

1
This condition implies ReX; > ReX + 3 and |y1| € |y| € p. Thus Vg,

is mapped to itself.
In order to prove that Wg ,; is attracted by 0. it is enough to show

that Vg , is attracted by (oco,0). We see inductively that

mﬁn;R+g
. 2K C
Let C be a constant big enough to have C' > T 7] and p < ——. We
prove by induction that if R is big enough, we have
C
yn| € ————
(R+ 3)%

The inequality

R+1 . C
: P e
(34) 7" bC + R
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C 2 2K
> 1 T
BCT R~ 1300 > 1 from C T 15 So

that (3.4) is true if R is big enough. Since

holds because we see that

K bC + K
[yn+1] < Bllynl + — < ny
"ankp (R+ ~'2_)”

C
(R + 2405
We have now kp disjoint domains attracted by O. Each of them is
positively invariant by F' since Vi, is positively invariant. Furthermore

the inequality |y, < will be satistied by (3.4).

since T4 ~ &, when n — oo, we have always the same branch of 2%
Let D be the attracting domain of O. Then we want to prove if ( € D,
for n big enough, (, = (zn,y,) is in one of the W}, , ;’s, or equivalently

o 1 -
that (%, y,) is in Ur.,, or that (—-—k—;,yn) is in V3 ,. But y, — 0 and

Tn
we have ) )
1
e = & + 14 cx® + O, (|z|' T %),
1

so Re?];; — oo when z, — 0. So ¢ belongs to the union of the increasing

sequence of open sets

D; = Fem"(Wg,;). O

(G

n=0

4. Super-attractive fixed point

In this section, we consider the local behaviour of holomorphic map-
pings with a super-attractive fixed points. Let f : C — C be a complex
holomorphic mapping. A point p € C is called a super-attractive fixed
point if f(p) = p and f'(p) = 0. If f is not a constant function, the
classical Bottcher’s theorem asserts that f is holomorphically conjugate
to the map z — z* for some integer & > 1 in a neighborhood of p (see
(5] for the proof).
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Let us consider a complex 2-dimensional dynamical system F : C? —
C2. Assume F is holomorphic in a neighborhood of the origin, O = (0,0),
and that the origin is a fixed point of F, i.e., F(O) = O. Futhermore,
we assume both of the eigenvalues of the Jacobian matrix at the origin,
DF(0), are zero. Such a fixed point is said to be super-attractive.
Hubbard and Papadopol [3] studied the case of super-attractive fixed
points for homogeneous polynomial maps and their perturbations.

Let F : C? — C? be holomorphic in a neighborhood of the origin,
O = (0,0). Suppose that the origin is a fixed point of F, i.e., F(O) = O.
Let

F(.’L" y) = (fl(xv y)v fg(.’lf, y))

We assume that the z-axis, {(z,0)}, and the y-axis, {(0,y)} are invariant
under F, i.e.,

fa(z,00=0 and  fi(0,y)=0

holds for all z and y near the origin. We assume
fi(z,0) = * + h.ot., f2(0,y) = y? + h.o.t.

where k, p > 2. Moreover, we assume det(DF) = 0 along the z-axis and
the y-axis.

Under the assumptions above, we can apply the Botcher’s theorem
to normalize the mapping on the z-axis and the y-axis respectively. We
can rewrite the mapping F in the form

Alz,y) = 251 + ygi(z,v))
fa(z,y) = y* (1 + zga(z, y))
in a neighborhood of the origin, where ¢1(z,y) and g2(z,y) are holomor-

phic in the neighborhood of the origin. Let ¥ : C* — C? denote the
"normal form” mapping ¥(z,y) = (z*, y?).

THEOREM 4.1. Let F : C* — C? be holomorphic mapping defined
near the origin. Suppose F is of the form

F(z,y) = (z*(1 + y91(z,v)),v*(1 + 2g2(z, 1))
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where k, p > 2, and g(z,y) and go(z,y) are holomorphic near the origin.
Then there exists a holomorphic change of coordinates ® : C2 — C2
around the origin with

®(0,0) = (0,0), D‘ib(o):@ ?)

such that
PoF=Tod

holds in a neighborhood of the origin, where U(z,y) = (z*, yP).

ProoOF. We will prove Theorem 4.1 for the cas> k = 2. p = 2. The
same method holds for higher degrees of k and p.

Since
0 0
DF(()):(O 0),

there exists a neighborhood U C C? of the origin, satisfying closure
(F(U)) C U and that for any (z,y) € U, lim #°*(z,y) = O holds.

MOI‘GOVCI‘, WE caln assurlie

lygi(z,y)| < lzga(z,y)| <

b | —
B o

for all (2,y) € U. We shall denote the components of F°" as
F(z.y) = (FY™(2,y), F3™(2.9) = ('ns Yn)-

First, let us construct the first component &, of ®. Let wolz,y) ==z

and define ¢, (z,y): U — C by

L,Qn(l', !/) = (’Flon(xv y))flrr

for n =1,2..... Here, we choose the branch of the right hand side sat-

isfying —ai-(O) = 1. As F maps the y-axis into itself, v, is holomorphic
T
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in the neighborhood. Let us verify that ¢, converges uniformly in U.
We see

1

ensi(@.y) _ (B @ y)mm  ((AE )T
#n(2.y) (F™(z, ) Fy™(z.y)

1

_ <m(__zﬁ_> T ((xiu ¥ yngl(xn,ynm%)fl”

Tn Tn

1

= (1 + yngl(rnvyn))m'

1
As |ygi(z,y)| < 5 holds in the neighborhood U,

n
Pnt1(2,y) H (1 +y;g1(;,9,)) 7%

is uniformly convergent in U, where (x9,y0) = (z,y). Hence, by setting

lim Pn = @17

n—oc

®, is holomorphic in U and satisfies the function equation
®,0F = 2.

Similarly, the second component ®; can be defined. Therefore by
setting

@(.’L‘,y) = (cbl(xty)v (I)?(‘T:y))a

the function equation
PoF=¥od

holds near the origin. [
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