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ON THE NORM OF THE OPERATOR aI + bH ON Lp(R)

Yong Ding, Loukas Grafakos, and Kai Zhu

Abstract. We provide a direct proof of the following theorem of Kalton,

Hollenbeck, and Verbitsky [7]: let H be the Hilbert transform and let a, b

be real constants. Then for 1 < p <∞ the norm of the operator aI + bH
from Lp(R) to Lp(R) is equal to(

max
x∈R

|ax− b + (bx + a) tan π
2p
|p + |ax− b− (bx + a) tan π

2p
|p

|x + tan π
2p
|p + |x− tan π

2p
|p

) 1
p

.

Our proof avoids passing through the analogous result for the conjugate

function on the circle, as in [7], and is given directly on the line. We also

provide new approximate extremals for aI + bH in the case p > 2.

1. Introduction

In this note we revisit the celebrated result of Kalton, Hollenbeck, and Ver-
bitsky [7] concerning the value of the norm of the operator aI+bH from Lp(R)
to Lp(R) for 1 < p < ∞ and a, b real constants. We provide a self-contained
direct proof of this result on the real line. The original proof in [7] was given
for the conjugate function on the circle in lieu of the Hilbert transform and
the corresponding result for the line was obtained from the periodic case via
a transference-type argument due to Zygmund [13, Ch XVI, Th. 3.8] known
as “blowing up the circle”. Here we work directly with the Hilbert transform
on the line, using an idea contained in [4] and [6], which is based on applying
subharmonicity on the boundary of a suitable family of discs that fill up the
upper half space as their radii tend to infinity. The main estimates needed for
our proof (Lemmas 3.1 and 3.2) are as in [7] but are included in this note for
the sake of completeness (with a minor adjustment). The new contributions of
this article are contained in Sections 4 and 5. In Section 4 we use a limiting
argument and subharmonicity to prove the claimed bound for aI + bH. We
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obtain the approximate extremals for the operators aI + bH in Section 5; re-
call that the approximate extremals for the Hilbert transform first appeared in
Gohberg and Krupnik [3] for 1 < p < 2 and were also used by Pichorides [12].
We find new approximate extremals for the Hilbert transform for 2 < p <∞ in
Section 5 and we use them to construct corresponding approximate extremals
for aI + bH for this range of p’s. We note that the case a = 0, b = 1 of this
result was proved by Pichorides [12] and B. Cole (unpublished, see [2]), while
the case a = 0, b = 1, p = 2m, m = 1, 2, . . . , was obtained four years earlier
by Gohberg and Krupnik [3]. For a short history on this topic we refer to
Laeng [9]. It is noteworthy that the operator norm of the Hilbert transform on
Lp is also the norm of other operators, for instance of the segment multiplier;
on this see De Carli and Laeng [1].

2. The norm of aI + bH

Denote the identity operator by I. The Hilbert transform on the real line is
defined by

Hf(x) = p.v.
1

π

∫
R

f(t)

x− t
dt

for a smooth function with compact support. For a, b ∈ R, define

(1) Bp = max
x∈R

|ax− b+ (bx+ a) tan γ|p + |ax− b− (bx+ a) tan γ|p

|x+ tan γ|p + |x− tan γ|p
,

where γ = π
2p . Bp can be defined equivalently by

(2) Bp = (a2 + b2)p/2 max
0≤θ≤2π

| cos(θ + θ0)|p + | cos(θ + θ0 + π
p )|p

| cos θ|p + | cos(θ + π
p )|p

,

where tan θ0 = b/a. By letting θ = −ϑ− π/p,

(3) Bp = (a2 + b2)p/2 max
0≤ϑ≤2π

| cos(ϑ− θ0)|p + | cos(ϑ− θ0 + π
p )|p

| cosϑ|p + | cos(ϑ+ π
p )|p

.

Our goal is to provide a proof of the following result in [7]:

Theorem 1 ([7]). Let 1 < p <∞ and a, b ∈ R. Then for all smooth functions
with compact support f on the line we have

‖(aI + bH)f‖pLp(R) ≤ Bp‖f‖
p
Lp(R),

where the constant Bp is sharp. In other words,

‖aI + bH‖Lp(R)→Lp(R) = B
1
p
p .

Without loss of generality, we assume that a = cos θ0, b = sin θ0, so that
a2 + b2 = 1. As aI + bH maps real-valued functions to real-valued functions,
in view of the Marcinkiewicz and Zygmund theorem [11] (see also [5, Theorem
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5.5.1]), the norms of aI + bH on real and complex Lp spaces are equal.1 Thus
we may work with a nice real-valued function f in the proof of Theorem 1.

3. Some lemmas

In this section we provide two auxiliary results that are crucial in the proof
of the main theorem.

Lemma 3.1 ([7]). Suppose p > 1/2, p 6= 1, and F is a p-homogeneous contin-
uous function on C. Suppose there is a sector S so that F is subharmonic on S
and superharmonic on the complementary sector S′. Suppose further there is
no nontrivial sector on which F is harmonic. Suppose that F (z)+F (eiπ/pz) ≥ 0
for all z, and there exists z0 6= 0 so that F (z0) + F (eiπ/pz0) = 0. Then there
is a continuous p-homogeneous subharmonic function G with G(z) ≤ F (z) for
all z ∈ C.

Proof. Lemma 3.1 is a restatement of Theorem 3.5 in [7]. We only provide a
sketch below making a minor modification in the proof in [7] (i.e., definition of
h in (4)).

We can suppose there exists z0 with |z0| = 1 so that F (z0)+F (eiπ/pz0) = 0.
Let z0 = eit0 , z1 = ei(t0+π/p), since p > 1/2, there exists ε > 0 such that
t0 − ε < t0 < t0 + π/p < t0 + 2π − ε. Write F (reit) = rpf(pt), where f is a
2pπ-periodic function on R. By Proposition 3.3 in [7], if I is any interval so that
eix/p ∈ S for x ∈ I, then f is trigonometrically convex on I, and if eix/p ∈ S′
for x ∈ I, then f is trigonometrically concave on I. At least one of z0, z1 is
contained in S; let us suppose that z0 ∈ S. The function f(x) + f(x+ π) has
minimum at pt0, hence f ′−(pt0)+f ′−(pt0+π) ≤ 0, f ′+(pt0)+f ′+(pt0+π) ≥ 0. This
implies that there exist a and b such that a+ b = 0 and f ′−(pt0) ≤ a ≤ f ′+(pt0)
and f ′−(pt0 + π) ≤ b ≤ f ′+(pt0 + π). Now define

(4) h(x) = f(pt0) cos(x− pt0) + a sin(x− pt0).

Then by Lemma 3.1 in [7], h ≤ f on a neighborhood of pt0. Lemma 3.2 in [7]
implies that h(x) ≤ f(x) for pα+2pπ ≤ x < pt0+π+δ and for pt0 ≤ x ≤ pβ. By
the Phragmén-Lindelöf theorem ([10]) we obtain that h ≤ f in a neighborhood
of [pt0, pt0 + π].

Let T = {reiθ : r > 0, t0 < θ < t0 + π
p } and define H(reiθ) = rph(pθ) for

t0 < θ < t0 + π
p and

G(z) =

{
H(z) if z ∈ T ,
F (z) if z /∈ T .

Then G(z) ≤ F (z) for all z ∈ C =
{
reit : r > 0, t0 − ε ≤ t < t0 + 2π − ε

}
and G is subharmonic on both T and its complementary sector T ′. It is easy
to see G is then subharmonic on C\{0} since h ≤ f in a neighborhood of pt0

1for operators that do not map real-valued functions to real-valued functions, these norms

may not be equal; for instance this is the case for the Riesz projections, see [8].
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and pt0 + π. Finally h(x) + h(x + π) = 0 and Lemma 3.1 in [7] imply that
G(z) + G(eiπ/pz) ≥ 0 for all z. Integrating over a circle around 0 yields the
subharmonicity of G at 0. �

Next we have a version of Lemma 4.2 in [7] in which we provide an explicit
formula for the subharmonic function G.

Lemma 3.2. Let 1 < p < ∞, Bp be given by (1), T = {reit : r > 0, t0 < t <
t0 + π

p }, where t0 is the value that makes right part of (3) attain its maximum,

and there exists ε > 0 such that t0 − ε < t0 < t0 + π/p < t0 + π − ε. Let
z = reit, z0 = reit0 , G(z) = G(reit) be π-periodic of t and when t0 − ε < t <
t0 + π − ε:

G(z) =


Bp|Rez0|p−1sgn(Rez0)Re[( zz0 )pz0]− |aRez0 + bImz0|p−1

×sgn(aRez0 + bImz0)(aRe[( zz0 )pz0] + bIm[( zz0 )pz0]), if z ∈ T,
Bp|Rez|p − |aRez + bImz|p, if z /∈ T.

Then G is subharmonic on C and satisfies

(5) |aRez + bImz|p ≤ Bp|Rez|p −G(z)

for all z ∈ C.

Proof. The case b = 0 is trivial, so we assume b 6= 0, and we may further
assume that a2 + b2 = 1. Let F (z) = Bp|Rez|p − |aRez + bImz|p. Then
F (reit) = rpf(t), where f(t) = Bp| cos t|p − |a cos t+ b sin t|p is π-periodic and
continuously differentiable. The definition in (2) implies that

min
0≤t≤2π

[f(t) + f(t+ π/p)] = 0.

We observe that ∆F ≥ 0 is equivalent to

Bp|Rez|p−2 ≥ |aRez + bImz|p−2.

In order for F (z) to be subharmonic, the following must be true:

|a+ b tan t|p−2 ≤ Bp.

We can see that for p 6= 2 there will be two separate “double sectors” where
F (z) is subharmonic, and superharmonic in their complement. So let p̃ =

p/2, t̃0 = 2t0, define F̃ (z) = F (z1/2), then F̃ is p̃-homogeneous and satisfies the

hypotheses of Lemma 3.1 with p̃ and t̃0. Write F̃ (reit) = rp̃f̃(p̃t), where

f̃(t) = Bp| cos(t/p)|p − |a cos(t/p) + b sin(t/p)|p.

We can get

(6) f̃(p̃t̃0) = Bp| cos t0|p − | cos(t0 − θ0)|p,

(7) f̃ ′−(p̃t̃0) = f̃ ′+(p̃t̃0) = −Bp
| cos t0|p

cos t0
sin t0 +

| cos(t0 − θ0)|p

cos(t0 − θ0)
sin(t0 − θ0),
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where tan θ0 = b/a. By the proof of Lemma 3.1, let

h(x) = f̃(p̃t̃0) cos(x− p̃t̃0) + f̃ ′+(p̃t̃0) sin(x− p̃t̃0),

then h(x) ≤ f̃(x) for all x in a neighborhood of [p̃t̃0, p̃t̃0 + π].

Let T̃ = {reit : r > 0, t̃0 < t < t̃0 + π
p̃ }, and H(reit) = rp̃h(p̃t) for t̃0 < t <

t̃0 + π
p̃ , let

G̃(z)

=

{
H(z) = H(reit) = rp̃[f̃(p̃t̃0) cos(p̃t− p̃t̃0) + f̃ ′+(p̃t̃0) sin(p̃t− p̃t̃0)] if z ∈ T̃ ,
F̃ (z) = rp̃(Bp| cos t2 |

p − |a cos t2 + b sin t
2 |
p) if z /∈ T̃ .

So let ε = 2ε, G̃ is subharmonic and G̃(z) ≤ F̃ (z) on {reit : r > 0, t̃0 − ε ≤ t <
t̃0 + 2π− ε} by Lemma 3.1. Now let G(z) = G̃(z2), clearly G is p-homogeneous
and satisfies G(z) ≤ F (z) for {reit : r > 0, t0 − ε < t < t0 + π − ε}. Since z2 is
holomorphic, G(z) is also subharmonic on {reit : r > 0, t0−ε < t < t0 +π−ε}.
Now let function G(z) = G(reit) be π-periodic. For t0 − ε ≤ t < t0 + π − ε, by

(6), (7) and G(z) = G̃(z2) we have:

G(z)

=


rp[Bp

| cos t0|p
cos t0

cos(p(t− t0) + t0)− | cos(t0−θ0)|
p

cos(t0−θ0) cos(p(t− t0) + t0 − θ0)],

if z ∈ T,
rp(Bp| cos t|p − | cos(t− θ0)|p), if z /∈ T,

where tan θ0 = b/a. It is easy to see G(z) ≤ F (z) for all z ∈ C, by this we
mean {reit : r > 0, t0− ε ≤ t < t0 + 2π− ε}, so we get (5). Using similar proof
as Lemma 3.1 and the periodicity of G, we can get G(z) is also subharmonic
on C. Since z0 = reit0 , the above formula is equivalent to

G(z) =


Bp|Rez0|p−1sgn(Rez0)Re[( zz0 )pz0]− |aRez0 + bImz0|p−1

×sgn(aRez0 + bImz0)(aRe[( zz0 )pz0] + bIm[( zz0 )pz0]), if z ∈ T,
Bp|Rez|p − |aRez + bImz|p, if z /∈ T.

This completes the proof of the lemma. �

4. Proof of Theorem 1

If p = 2, then obviously

‖aI + bH‖2L2(R)→L2(R) = a2 + b2 = B2,

so we can assume p 6= 2. Consider the holomorphic extension of f(x)+iH(f)(x)
on the upper half space given by

u(z) + iv(z) =
i

π

∫ +∞

−∞

f(t)

z − t
dt, u, v real-valued.
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Let G(z) be given by Lemma 3.2, our next step is to use Lemma 3.2 and replace
z with h(z) = u(z) + iv(z). Since h(z) is holomorphic and G is subharmonic,
it follows that G(h(z)) is subharmonic on the upper half space. We note that
([4])

|u(x+ iy)|+ |v(x+ iy)| ≤ Cf
1 + |x|+ |y|

.

By Lemma 3.2, we have that |G(z)| ≤ C|z|p, hence

|G(h(z))| ≤ C|h(z)|p ≤ C(|u(z)|+ |v(z)|)p.
So

(8) |G(h(z))| ≤
Cpf

(1 + |x|+ |y|)p
,

where z = x+ iy. The boundary values of G(h(z)) are G(h(x+ i0)).
The following part of the argument is based on [6]. For R > 100, consider

the circle with center (0, R) and radius R′ = R−R−1, denote by

CUR = {iR+R′eiφ : −π/4 ≤ φ ≤ 5π/4}
and

CLR = {iR+R′eiφ : 5π/4 ≤ φ ≤ 7π/4}.
It follows from the subharmonicity of G(h(z)) that

(9)

∫
CUR

G(h(z))ds+

∫
CLR

G(h(z))ds ≥ 2πR′G(h(iR)).

Clearly (8) implies that

(10) |R′G(h(iR))| ≤ R′ C

(1 +R)p
→ 0 as R→∞,

and that

(11)

∣∣∣∣ ∫
CUR

G(h(z))ds

∣∣∣∣ ≤ R′ C

(1 +R)p
→ 0 as R→∞.

Letting R→∞ in (9), and using (10), (11), we obtain

(12)

∫
R
G(h(x))dx ≥ 0

provided

(13)

∫
CLR

G(h(z))ds→
∫
R
G(h(x))dx as R→∞.

To show (13), using parametric equations, the integral
∫
CLR

G(h(z))ds is

equal to

(14)

∫ R′
√
2/2

−R′
√
2/2

G

(
h

(
x+ iR− iR′

√
1− x2

R′2

))
dx√

1− x2

R′2

.
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In view of (8), for all R > 100, the integrand in (14) is bounded by the inte-

grable function Cf (1 + |x|)−p since
√

1− x2

R′2 is bounded from below by
√

1/2

in the range of integration. Then the Lebesgue dominated convergence theorem
gives that (14) converges to

(15)

∫
R
G(h(x))dx

as R→∞.
Then replace z with h(x) = f(x) + iH(f)(x) in (5) and integrate (5) with

respect to x, we get

(16)

∫
R
|af(x) + bH(f)(x)|pdx ≤ Bp

∫
R
|f(x)|pdx−

∫
R
G(h(x))dx.

So by (12) we obtain

(17) ‖(aI + bH)f‖pLp(R) ≤ Bp‖f‖
p
Lp(R).

5. The sharpness of the constant Bp

To deduce that the constant Bp is sharp, we need to show

(18) ‖aI + bH‖pLp(R)→Lp(R) ≥ Bp.

The proof of (18) relies on finding suitable analytic functions in Hp of the
upper half space that will serve as approximate extremals. Unlike the case of

the circle, where the functions
(
(1 + z)/(1 − z)

)1/p−ε
in Hp of the unit disc

serve this purpose for all 1 < p <∞ (see [7]) as ε ↓ 0, we need to consider the
cases p < 2 and p > 2 separately.

Case 1: 1 < p < 2. Recall the analytic function used in [3] (also used in
[12]),

F (z) = (z + 1)−1
(
i
z + 1

z − 1

)2γ/π

on the upper half plane. If 1 < p < 2 and π/2p′ < γ < π/2p, where p′ =
p/(p−1), then F (z) belongs to Hp (the Hardy Spaces) in the upper half plane.
Let

fγ(x) =
1

x+ 1

(
|x+ 1|
|x− 1|

)2γ/π

cos γ,

then we have

F (x+ i0) = fγ(x) + i

{
1

x+1

( |x+1|
|x−1|

)2γ/π
sin γ when |x| > 1,

− 1
x+1

( |x+1|
|x−1|

)2γ/π
sin γ when |x| < 1,

and since this is equal to the boundary values of a holomorphic function on the
upper half plane, it follows that

H(fγ)(x) =

{
(tan γ)fγ(x) when |x| > 1,

−(tan γ)fγ(x) when |x| < 1.
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So consider a function of the form gγ = αfγ + βH(fγ), where α, β ∈ R. Notice

that H(gγ) = αH(fγ) − βfγ , and the function (|x − 1|−
2γ
π |x + 1|

2γ
π −1)p is

integrable over the entire line since π/2p′ < γ < π/2p, so for fixed α, β we have

‖(aI + bH)gγ‖pLp(R)
‖gγ‖pLp(R)

=

∫
R |(aα− bβ)fγ + (aβ + bα)H(fγ)|pdx∫

R |αfγ + βH(fγ)|pdx

=
|(aα− bβ) + (aβ + bα) tan γ|pAγ + |(aα− bβ)− (aβ + bα) tan γ|pBγ

|α+ β tan γ|pAγ + |α− β tan γ|pBγ
,

where Aγ =
∫
|x|>1

|fγ(x)|pdx,Bγ =
∫
|x|<1

|fγ(x)|pdx. It is easy to get Aγ ≥ Bγ ,
so

‖(aI + bH)gγ‖pLp(R)
‖gγ‖pLp(R)

(19)

≥ Bγ
Aγ

|(aα− bβ) + (aβ + bα) tan γ|p + |(aα− bβ)− (aβ + bα) tan γ|p

|α+ β tan γ|p + |α− β tan γ|p
,

and

‖(aI + bH)gγ‖pLp(R)
‖gγ‖pLp(R)

(20)

≤ Aγ
Bγ

|(aα− bβ) + (aβ + bα) tan γ|p + |(aα− bβ)− (aβ + bα) tan γ|p

|α+ β tan γ|p + |α− β tan γ|p
.

Now we argue that

(21) lim
γ→ π

2p

Aγ
Bγ

= 1.

In fact, by the second mean value theorem for definite integrals, there exists
ε ∈ (δ, 1) where 0 < δ < 1 so that∫ 1

δ

|x|p−2 |x+ 1|
2γp
π −p

|x− 1| 2γpπ
dx∫ 1

δ

|x+ 1|
2γp
π −p

|x− 1| 2γpπ
dx

=

1
δ2−p

∫ ε

δ

|x+ 1|
2γp
π −p

|x− 1| 2γpπ
dx+

∫ 1

ε

|x+ 1|
2γp
π −p

|x− 1| 2γpπ
dx∫ ε

δ

|x+ 1|
2γp
π −p

|x− 1| 2γpπ
dx+

∫ 1

ε

|x+ 1|
2γp
π −p

|x− 1| 2γpπ
dx

.

Since
∫ 1

ε
|x+ 1|

2γp
π −p|x− 1|−

2γp
π dx→∞ as γ → π

2p , we get

lim
γ→ π

2p

∫ 1

δ

|x|p−2|x+ 1|
2γp
π −p|x− 1|−

2γp
π dx∫ 1

δ

|x+ 1|
2γp
π −p|x− 1|−

2γp
π dx

= 1.
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Clearly this implies (21). Combining (19) with (20) we obtain

‖aI + bH‖pLp(R)→Lp(R)

≥ max
α,β∈R

(
|(aα− bβ) + (aβ + bα) tan γ′|p + |(aα− bβ)− (aβ + bα) tan γ′|p

|α+ β tan γ′|p + |α− β tan γ′|p

) 1
p

,

where γ′ = π
2p . Letting x = α/β in (1), we see that (18) holds, therefore the

constant Bp is sharp for 1 < p < 2.

Case 2: 2 < p <∞. In this case, the function (|x− 1|−
2γ
π |x+ 1|

2γ
π −1)p used

in Case 1 fails to be integrable over the entire line. So we consider the following
analytic function:

F (z) =
(
i(z2 − 1)

)− 2γ
π ,

which belongs to Hp in the upper half plane when 2 < p <∞ and π/4p < γ <
π/2p. Let

fγ(x) = |x+ 1|−
2γ
π |x− 1|−

2γ
π cos γ,

then we have

F (x+ i0) = fγ(x) + i

{
−|x+ 1|−

2γ
π |x− 1|−

2γ
π sin γ when |x| > 1,

|x+ 1|−
2γ
π |x− 1|−

2γ
π sin γ when |x| < 1.

It follows that

H(fγ)(x) =

{
(tan γ)fγ(x) when |x| < 1,

−(tan γ)fγ(x) when |x| > 1.

Consider the function gγ = αfγ + βH(fγ), where α, β ∈ R. Notice that the

function (|x− 1|−
2γ
π |x+ 1|−

2γ
π )p is integrable over the entire line since π/4p <

γ < π/2p, so for fixed α, β we have

‖(aI + bH)gγ‖pLp(R)
‖gγ‖pLp(R)

=
|(aα− bβ) + (aβ + bα) tan γ|pAγ + |(aα− bβ)− (aβ + bα) tan γ|pBγ

|α+ β tan γ|pAγ + |α− β tan γ|pBγ
,

where Aγ =
∫
|x|<1

|fγ(x)|pdx,Bγ =
∫
|x|>1

|fγ(x)|pdx. It is easy to see Aγ ≤ Bγ ,
so

‖(aI + bH)gγ‖pLp(R)
‖gγ‖pLp(R)

(22)

≤ Bγ
Aγ

|(aα− bβ) + (aβ + bα) tan γ|p + |(aα− bβ)− (aβ + bα) tan γ|p

|α+ β tan γ|p + |α− β tan γ|p
,

and

‖(aI + bH)gγ‖pLp(R)
‖gγ‖pLp(R)

(23)
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≥ Aγ
Bγ

|(aα− bβ) + (aβ + bα) tan γ|p + |(aα− bβ)− (aβ + bα) tan γ|p

|α+ β tan γ|p + |α− β tan γ|p
.

By the second mean value theorem for definite integrals, there exists ε ∈ (δ, 1)
where 0 < δ < 1 so that∫ 1

δ

|x|
4γp
π −2|x+ 1|−

2γp
π |x− 1|−

2γp
π dx∫ 1

δ

|x+ 1|−
2γp
π |x− 1|−

2γp
π dx

=

δ
4γp
π −2

∫ ε

δ

|x+ 1|−
2γp
π |x− 1|−

2γp
π dx+

∫ 1

ε

|x+ 1|−
2γp
π |x− 1|−

2γp
π dx∫ ε

δ

|x+ 1|−
2γp
π |x− 1|−

2γp
π dx+

∫ 1

ε

|x+ 1|−
2γp
π |x− 1|−

2γp
π dx

.

Since
∫ 1

ε
|x+ 1|−

2γp
π |x− 1|−

2γp
π dx→∞ as γ → π

2p , we have

lim
γ→ π

2p

∫ 1

δ

|x|
4γp
π −2|x+ 1|−

2γp
π |x− 1|−

2γp
π dx∫ 1

δ

|x+ 1|−
2γp
π |x− 1|−

2γp
π dx

= 1.

This implies

lim
γ→ π

2p

Bγ
Aγ

= 1.

Combining (22) and (23) we obtain

‖aI + bH‖pLp(R)→Lp(R)

≥ max
α,β∈R

( |(aα−bβ) + (aβ + bα) tan π
2p |

p + |(aα− bβ)−(aβ + bα) tan π
2p |

p

|α+ β tan π
2p |p+ |α− β tan π

2p |p

) 1
p

.

Letting x = α/β in (1), so (18) holds, therefore the constant Bp is sharp for
2 < p <∞.
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