• Title/Summary/Keyword: MID

Search Result 8,271, Processing Time 0.034 seconds

Time and Space Efficient Search with Suffix Arrays (접미사 배열을 이용한 시간과 공간 효율적인 검색)

  • Choi, Yong-Wook;Sim, Jeong-Seop;Park, Kun-Soo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.5
    • /
    • pp.260-267
    • /
    • 2005
  • To search efficiently a text T of length n for a pattern P over an alphabet 5, suffix trees and suffix arrays are widely used. In case of a large text, suffix arrays are preferred to suffix trees because suffix ways take less space than suffix trees. Recently, O(${\mid}P{\mid}{\codt}{\mid}{\Sigma}{\mid}$-time and O(${\mid}P{\mid}P{\cdot}log{\mid}{\Sigma}{\mid}$)-time search algorithms in suffix ways were developed. In this paper we present time and space efficient search algorithms in suffix arrays. One algorithm runs in O(${\mid}P{\mid}$) time using O($n{\cdot}{\mid}{\Sigma}{\mid}$)-bits space, and the other runs in O($n{\cdot}{\mid}{\Sigma}{\mid}$ time using O($nlog{\mid}{\Sigma}{\mid}+{\mid}{\Sigma}{\mid}{\cdot}$nlog log n/logn)-bits space, which is more space efficient and still fast. Experiments show that our algorithms are efficient in both time and space when compared to previous algorithms.

POSITIVE SOLUTION FOR A CLASS OF NONLOCAL ELLIPTIC SYSTEM WITH MULTIPLE PARAMETERS AND SINGULAR WEIGHTS

  • AFROUZI, G.A.;ZAHMATKESH, H.
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.1_2
    • /
    • pp.121-130
    • /
    • 2017
  • This study is concerned with the existence of positive solution for the following nonlinear elliptic system $$\{-M_1(\int_{\Omega}{\mid}x{\mid}^{-ap}{\mid}{\nabla}u{\mid}^pdx)div({\mid}x{\mid}^{-ap}{\mid}{\nabla}u{\mid}^{p-2}{\nabla}u)\\{\hfill{120}}={\mid}x{\mid}^{-(a+1)p+c_1}\({\alpha}_1A_1(x)f(v)+{\beta}_1B_1(x)h(u)\),\;x{\in}{\Omega},\\-M_2(\int_{\Omega}{\mid}x{\mid}^{-bq}{\mid}{\nabla}v{\mid}^qdx)div({\mid}x{\mid}^{-bq}{\mid}{\nabla}v{\mid}^{q-2}{\nabla}v)\\{\hfill{120}}={\mid}x{\mid}^{-(b+1)q+c_2}\({\alpha}_2A_2(x)g(u)+{\beta}_2B_2(x)k(v)\),\;x{\in}{\Omega},\\{u=v=0,\;x{\in}{\partial}{\Omega},$$ where ${\Omega}$ is a bounded smooth domain of ${\mathbb{R}}^N$ with $0{\in}{\Omega}$, 1 < p, q < N, $0{\leq}a$ < $\frac{N-p}{p}$, $0{\leq}b$ < $\frac{N-q}{q}$ and ${\alpha}_i,{\beta}_i,c_i$ are positive parameters. Here $M_i,A_i,B_i,f,g,h,k$ are continuous functions and we discuss the existence of positive solution when they satisfy certain additional conditions. Our approach is based on the sub and super solutions method.

A SCATTERING PROBLEM IN A NONHOMOGENEOUS MEDIUM

  • Anar, I.Ethem
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.335-350
    • /
    • 1997
  • In this article, a scattering problem in a nonhomogeneous medium is formulated as an integral equation which contains boundary and volume integrals. The integral equation is solved for sufficiently small $$\mid$$\mid$1-p$\mid$$\mid$,$\mid$$\mid${k_i}^2-k^2$\mid$$\mid$\;and\;$\mid$$\mid${\nabla}p$\mid$$\mid$$ where $k,\;k_i$ and p the wave numbers and the density respectively.

  • PDF

INEQUALITIES FOR THE DERIVATIVE OF POLYNOMIALS WITH RESTRICTED ZEROS

  • Rather, N.A.;Dar, Ishfaq;Iqbal, A.
    • Korean Journal of Mathematics
    • /
    • v.28 no.4
    • /
    • pp.931-942
    • /
    • 2020
  • For a polynomial $P(z)={\sum_{{\nu}=0}^{n}}\;a_{\nu}z^{\nu}$ of degree n having all its zeros in |z| ≤ k, k ≥ 1, it was shown by Rather and Dar [13] that ${\max_{{\mid}z{\mid}=1}}{\mid}P^{\prime}(z){\mid}{\geq}{\frac{1}{1+k^n}}\(n+{\frac{k^n{\mid}a_n{\mid}-{\mid}a_0{\mid}}{k^n{\mid}a_n{\mid}+{\mid}a_0{\mid}}}\){\max_{{\mid}z{\mid}=1}}{\mid}P(z){\mid}$. In this paper, we shall obtain some sharp estimates, which not only refine the above inequality but also generalize some well known Turán-type inequalities.

LP-TYPE INEQUALITIES FOR DERIVATIVE OF A POLYNOMIAL

  • Wani, Irfan Ahmad;Mir, Mohammad Ibrahim;Nazir, Ishfaq
    • Korean Journal of Mathematics
    • /
    • v.29 no.4
    • /
    • pp.775-784
    • /
    • 2021
  • For the polynomial P(z) of degree n and having all its zeros in |z| ≤ k, k ≥ 1, Jain [6] proved that $${{\max\limits_{{\mid}z{\mid}=1}}\;{\mid}P^{\prime}(z){\mid}{\geq}n\;{\frac{{\mid}c_0{\mid}+{\mid}c_n{\mid}k^{n+1}}{{\mid}c_0{\mid}(1+k^{n+1})+{\mid}c_n{\mid}(k^{n+1}+k^{2n})}\;{\max\limits_{{\mid}z{\mid}=1}}\;{\mid}P(z){\mid}$$. In this paper, we extend above inequality to its integral analogous and there by obtain more results which extended the already proved results to integral analogous.

SOME Lq INEQUALITIES FOR POLYNOMIAL

  • Chanam, Barchand;Reingachan, N.;Devi, Khangembam Babina;Devi, Maisnam Triveni;Krishnadas, Kshetrimayum
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.2
    • /
    • pp.331-345
    • /
    • 2021
  • Let p(z)be a polynomial of degree n. Then Bernstein's inequality [12,18] is $${\max\limits_{{\mid}z{\mid}=1}}\;{\mid}p^{\prime}(z){\mid}\;{\leq}\;n\;{\max_{{\mid}z{\mid}=1}{\mid}(z){\mid}}$$. For q > 0, we denote $${\parallel}p{\parallel}_q=\{{\frac{1}{2{\pi}}}{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_{0}}^{2{\pi}}}\;{\mid}p(e^{i{\theta}}){\mid}^qd{\theta}\}^{\frac{1}{q}}$$, and a well-known fact from analysis [17] gives $${{\lim_{q{\rightarrow}{{\infty}}}}\{{\frac{1}{2{\pi}}}{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_{0}}^{2{\pi}}}\;{\mid}p(e^{i{\theta}}){\mid}^qd{\theta}\}^{\frac{1}{q}}={\max\limits_{{\mid}z{\mid}=1}}\;{\mid}p(z){\mid}$$. Above Bernstein's inequality was extended by Zygmund [19] into Lq norm by proving ║p'║q ≤ n║p║q, q ≥ 1. Let p(z) = a0 + ∑n𝜈=𝜇 a𝜈z𝜈, 1 ≤ 𝜇 ≤ n, be a polynomial of degree n having no zero in |z| < k, k ≥ 1. Then for 0 < r ≤ R ≤ k, Aziz and Zargar [4] proved $${\max\limits_{{\mid}z{\mid}=R}}\;{\mid}p^{\prime}(z){\mid}\;{\leq}\;{\frac{nR^{{\mu}-1}(R^{\mu}+k^{\mu})^{{\frac{n}{\mu}}-1}}{(r^{\mu}+k^{\mu})^{\frac{n}{\mu}}}\;{\max\limits_{{\mid}z{\mid}=r}}\;{\mid}p(z){\mid}}$$. In this paper, we obtain the Lq version of the above inequality for q > 0. Further, we extend a result of Aziz and Shah [3] into Lq analogue for q > 0. Our results not only extend some known polynomial inequalities, but also reduce to some interesting results as particular cases.

A Marriage Problem Algorithm Based on Duplicated Sum of Inter-Preference Moving Method (중복된 최소 상호-호감도 합 이동방법을 적용한 결혼문제 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.5
    • /
    • pp.107-112
    • /
    • 2015
  • This paper proposes a simplified algorithm devised to obtain optimal solution to the marriage problem. In solving this problem, the most widely resorted to is the Gale-Shapley algorithm with the time complexity of $O({\mid}V{\mid}^2{\mid}E{\mid})$. The proposed algorithm on the other hand firstly constructs a $p_{ij}$ matrix of inter-preference sum both sexes' preference over the opposite sex. Secondly, it selects $_{min}p_i$ from each row to establish ${\mid}p_{.j}{\mid}{\geq}2,j{\in}S$, ${\mid}p_{.j}{\mid}=1$, $j{\in}H$, ${\mid}p_{.j}{\mid}=0$, $j{\in}T$. Finally, it shifts $_{min}\{_{min}p_{ST},p_{SH}+p_{HT\}$ for $_{min}P_{ST}$ of $S{\rightarrow}T$ and $p_{SH}+p_{HT}$, $p_{HT}<_{min}p_{ST}$ of $S{\rightarrow}H$, $H{\rightarrow}T$. The proposed algorithm has not only improved the Gale-Shapley's algorithm's complexity of $O({\mid}V{\mid}^2{\mid}E{\mid})$ to $O({\mid}V{\mid}^2)$ but also proved its extendable use on unbalanced marriage problems.

AN INEQUALITY OF SUBHARMONIC FUNCTIONS

  • Choi, Chang-Sun
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.543-551
    • /
    • 1997
  • We prove a norm inequality of the form $\left\$\mid$ \upsilon \right\$\mid$ \leq (r - 1) \left\$\mid$ u \right\$\mid$_p, 1 < p < \infty$, between a non-negative subharmonic function u and a smooth function $\upsilon$ satisfying $$\mid$\upsilon(0)$\mid$ \leq u(0), $\mid$\nabla\upsilon$\mid$ \leq \nabla u$\mid$$ and $\mid$\Delta\upsilon$\mid$ \leq \alpha\Delta u$, where $\alpha$ is a constant with $0 \leq \alpha \leq 1$. This inequality extends Burkholder's inequality where $\alpha = 1$.

  • PDF

THE SOURCE OF SEMIPRIMENESS OF RINGS

  • Aydin, Neset;Demir, Cagri;Camci, Didem Karalarlioglu
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1083-1096
    • /
    • 2018
  • Let R be an associative ring. We define a subset $S_R$ of R as $S_R=\{a{\in}R{\mid}aRa=(0)\}$ and call it the source of semiprimeness of R. We first examine some basic properties of the subset $S_R$ in any ring R, and then define the notions such as R being a ${\mid}S_R{\mid}$-reduced ring, a ${\mid}S_R{\mid}$-domain and a ${\mid}S_R{\mid}$-division ring which are slight generalizations of their classical versions. Beside others, we for instance prove that a finite ${\mid}S_R{\mid}$-domain is necessarily unitary, and is in fact a ${\mid}S_R{\mid}$-division ring. However, we provide an example showing that a finite ${\mid}S_R{\mid}$-division ring does not need to be commutative. All possible values for characteristics of unitary ${\mid}S_R{\mid}$-reduced rings and ${\mid}S_R{\mid}$-domains are also determined.

The design of the optical film for absorbent ARAS coating (흡수층을 이용한 무반사, 무정전용 광학박막의 설계)

  • Park, M.C.;Son, Y.B.;Jung, B.Y.;Lee, I.S.;Hwangbo, C.K.
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.1
    • /
    • pp.7-11
    • /
    • 2000
  • The anti-reflective anti-static (ARAS) optical film is designed using absorbent materials such as ITO, $TiN_xW_y$, Ag by Essential Macleod program. [air ${\mid}TiN_xW_y{\mid}SiO_2{\mid}$ glass] two layer shows wide-band AR coating in the wavelength range of 450~700 nm. The reflectivity, transmittance of this coating are below 0.5%, about 75%, respectively. [air $SiO_2{\mid}TiO_2{\mid}SiO_2{\mid}$, ITO glass] layer can adjust reflectance of below 0.5% with above 97% transmittance. In the [air ${\mid}SiO_2{\mid}TiO_2{\mid}SiO_2{\mid}$ Ag glass] layer, the transmission can be controlled at above 96% with reflectance of 1~2%.

  • PDF