DOI QR코드

DOI QR Code

LP-TYPE INEQUALITIES FOR DERIVATIVE OF A POLYNOMIAL

  • Received : 2021.07.04
  • Accepted : 2021.12.07
  • Published : 2021.12.30

Abstract

For the polynomial P(z) of degree n and having all its zeros in |z| ≤ k, k ≥ 1, Jain [6] proved that $${{\max\limits_{{\mid}z{\mid}=1}}\;{\mid}P^{\prime}(z){\mid}{\geq}n\;{\frac{{\mid}c_0{\mid}+{\mid}c_n{\mid}k^{n+1}}{{\mid}c_0{\mid}(1+k^{n+1})+{\mid}c_n{\mid}(k^{n+1}+k^{2n})}\;{\max\limits_{{\mid}z{\mid}=1}}\;{\mid}P(z){\mid}$$. In this paper, we extend above inequality to its integral analogous and there by obtain more results which extended the already proved results to integral analogous.

Keywords

References

  1. A. Aziz, Integral mean estimates for polynomials with restricted zeros, J. Approx. 55 (1988), 232-238. https://doi.org/10.1016/0021-9045(88)90089-5
  2. S. Bernstein, Sur'e ordre de la meilleure approximation des functions continues par des polynomes de degr'e donn'e, Mem. Acad. R. Belg., 4 (1912), 1-103.
  3. N. K. Govil, On the derivative of a polynomial, Proc. Amer. Math. Soc., 41 (1973), 543-546. https://doi.org/10.1090/S0002-9939-1973-0325932-8
  4. N. K. Govil, Some inequalities for derivatives of polynomials, J. Approx. Theory, 66 (1991), 29-35. https://doi.org/10.1016/0021-9045(91)90052-c
  5. G. H. Hardy, The mean value of the modulus of an analytic function, Proc. London Math. Soc., 14 (1915), 319-330.
  6. V. K. Jain,On the derivative of a polynomial, Bull. Math. Soc. Sci. Math. Roumanie Tome, 59 (2016), 339-347.
  7. M.A. Malik, On the derivative of a polynomial; j. Lond. Math. Soc. 1 (1969), 57-60. https://doi.org/10.1112/jlms/s2-1.1.57
  8. M. A. Malik, An integral mean estimate for polynomials, Proc. Amer. Math. Soc., 91 (1984), 281-284. https://doi.org/10.1090/S0002-9939-1984-0740186-3
  9. G. V. Milovanovic, D. S. Mitrinovic and T. M. Rassias, Topics in Polynomials, Extremal problems, Inequalities, Zeros , World Scientific, Singapore, (1994).
  10. Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, (2002).
  11. P. Turan, Uber die Ableitung von Polynomen Compos. Math. 7 , 89-95(1939)
  12. E. C. Titchmarsh, The theory of functions, The English Book Society and Oxford University Press, London. 1962.