References
- A. Aziz, Integral mean estimates for polynomials with restricted zeros, J. Approx. 55 (1988), 232-238. https://doi.org/10.1016/0021-9045(88)90089-5
- S. Bernstein, Sur'e ordre de la meilleure approximation des functions continues par des polynomes de degr'e donn'e, Mem. Acad. R. Belg., 4 (1912), 1-103.
- N. K. Govil, On the derivative of a polynomial, Proc. Amer. Math. Soc., 41 (1973), 543-546. https://doi.org/10.1090/S0002-9939-1973-0325932-8
- N. K. Govil, Some inequalities for derivatives of polynomials, J. Approx. Theory, 66 (1991), 29-35. https://doi.org/10.1016/0021-9045(91)90052-c
- G. H. Hardy, The mean value of the modulus of an analytic function, Proc. London Math. Soc., 14 (1915), 319-330.
- V. K. Jain,On the derivative of a polynomial, Bull. Math. Soc. Sci. Math. Roumanie Tome, 59 (2016), 339-347.
- M.A. Malik, On the derivative of a polynomial; j. Lond. Math. Soc. 1 (1969), 57-60. https://doi.org/10.1112/jlms/s2-1.1.57
- M. A. Malik, An integral mean estimate for polynomials, Proc. Amer. Math. Soc., 91 (1984), 281-284. https://doi.org/10.1090/S0002-9939-1984-0740186-3
- G. V. Milovanovic, D. S. Mitrinovic and T. M. Rassias, Topics in Polynomials, Extremal problems, Inequalities, Zeros , World Scientific, Singapore, (1994).
- Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, (2002).
- P. Turan, Uber die Ableitung von Polynomen Compos. Math. 7 , 89-95(1939)
- E. C. Titchmarsh, The theory of functions, The English Book Society and Oxford University Press, London. 1962.