DOI QR코드

DOI QR Code

A Marriage Problem Algorithm Based on Duplicated Sum of Inter-Preference Moving Method

중복된 최소 상호-호감도 합 이동방법을 적용한 결혼문제 알고리즘

  • Lee, Sang-Un (Dept. of Multimedia Eng., Gangneung-Wonju National University)
  • 이상운 (강릉원주대학교 멀티미디어공학과)
  • Received : 2015.04.18
  • Accepted : 2015.05.07
  • Published : 2015.05.30

Abstract

This paper proposes a simplified algorithm devised to obtain optimal solution to the marriage problem. In solving this problem, the most widely resorted to is the Gale-Shapley algorithm with the time complexity of $O({\mid}V{\mid}^2{\mid}E{\mid})$. The proposed algorithm on the other hand firstly constructs a $p_{ij}$ matrix of inter-preference sum both sexes' preference over the opposite sex. Secondly, it selects $_{min}p_i$ from each row to establish ${\mid}p_{.j}{\mid}{\geq}2,j{\in}S$, ${\mid}p_{.j}{\mid}=1$, $j{\in}H$, ${\mid}p_{.j}{\mid}=0$, $j{\in}T$. Finally, it shifts $_{min}\{_{min}p_{ST},p_{SH}+p_{HT\}$ for $_{min}P_{ST}$ of $S{\rightarrow}T$ and $p_{SH}+p_{HT}$, $p_{HT}<_{min}p_{ST}$ of $S{\rightarrow}H$, $H{\rightarrow}T$. The proposed algorithm has not only improved the Gale-Shapley's algorithm's complexity of $O({\mid}V{\mid}^2{\mid}E{\mid})$ to $O({\mid}V{\mid}^2)$ but also proved its extendable use on unbalanced marriage problems.

본 논문은 결혼 문제의 최적 해를 간단히 찾을 수 있는 알고리즘을 제안하였다. 일반적으로 결혼문제는 수행 복잡도 $O({\mid}V{\mid}^2{\mid}E{\mid})$의 Gale-Shapley 알고리즘으로 해를 구한다. 제안된 알고리즘은 먼저, 남성의 여성 선호도와 여성의 남성 선호도에 대해 상호-선호도 합 $p_{ij}$의 행렬로 변환시킨다. 두 번째로, 단순히 i행에서 최소값 $_{min}p_i$를 선택하여,${\mid}p_{.j}{\mid}{\geq}2,j{\in}S$, ${\mid}p_{.j}{\mid}=1$, $j{\in}H$, ${\mid}p_{.j}{\mid}=0$, $j{\in}T$로 설정하고, $S{\rightarrow}T$$_{min}p_{sr}$$S{\rightarrow}H$, $H{\rightarrow}T$$p_{SH}+p_{HT}$, $p_{HT}<{min}P_{ST}$에 대해 $_{min}\{_{min}p_{ST},p_{SH}+p_{HT\}$를 이동시키는 방법을 적용하였다. 제안된 알고리즘은 Gale-Shapley 알고리즘의 수행 복잡도 $O({\mid}V{\mid}^2{\mid}E{\mid})$$O({\mid}V{\mid}^2)$으로 향상시켰다. 또한, 불균형 결혼 문제인 경우에도 적용될 수 있도록 확장성을 갖고 있다.

Keywords

References

  1. T. Szabo, "Graph Theory," Institute of Technical Computer Science, Department of Computer Science, ETH, 2004.
  2. M. X. Goemans, "18.433 Combinatorial Operation: Lecture Notes on Bipartite Matching," Massachusetts Institute of Technology, 2007.
  3. J. T. Eyck, "Algorithm Analysis and Design," http://www.academic.marist.edu/-jzbv/algorithms/TheStableMarriageProblem.htm, 2008.
  4. Wikipedia, "Stable Marriage Problem,," http://en.wikipedia.org/wiki/Stable_marriage_problem, Wikimedia Foundation Inc., 2015.
  5. W. Hunt, "The Stable Marriage Problem," Lane Department of Computer Science and Electrical Engineering, West Virginia University, 2004.
  6. S. U. Lee, "Assignment Problem Algorithm Based on the First Selection Method of the Minimum Cost," Journal of IIBC, Vol. 13, No. 5, pp. 163-171, Oct. 2013.
  7. S. U. Lee, "The Grid Type Quadratic Assignment Problem Algorithm," Journal of KSCI, Vol. 19, No. 5, pp. 91-99, Apr. 2014.
  8. S. U. Lee, "A Marriage Problem Algorithm," Journal of KIIT, Vol. 11, No. 4, pp. 159-168, Apr. 2013.
  9. S. U. Lee, "Marriage Problem Algorithm Based on Maximum-Preferred Rank Selection Method," Journal of IIBC, Vol. 14, No. 3, pp. 111-117, Jun. 2014.
  10. R.W. Irving, "Stable Matching Problems with Exchange Restrictions," Journal of Combinatorial Optimization, Vol. 16, pp. 344-360, 2008. https://doi.org/10.1007/s10878-008-9153-1
  11. R. W. Irving, "The Man-Exchange Stable Marriage Problem," Department of Computing Science, Research Report, TR-2004-177, University of Glasgow, UK., 2004.
  12. K. Iwama, "Stable Matching Problems," http://www.lab2.kuis.kyoto-u.ac.jp/-iwama/papers/isaac2006-3.ppt, 2006.
  13. J. H. Kim, "MAT 2106-02 Discrete Mathematics: Combinatory Theory fromthe Prospective of Marriage Problem," Department of Mathematics, Yousei University, Korea, 2001.